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INTRODUCTION 
Wolf harvest season setting is complicated and controversial. State law requires Montana 

Fish, Wildlife and Parks (MFWP) to both reduce the wolf population and avoid federal relisting 
under the Endangered Species Act (Montana Fish, Wildlife and Parks, 2002). Disparate 
stakeholder groups each have different objectives for wolf management. For instance, big game 
advocates want to see improved big game populations and hunting opportunities in northwest 
Montana, while wolf advocates want to see regulations that minimize wolf mortality. Decision 
making about season setting tries to balance these objectives. Wolf hunting and trapping season 
decisions are made by the Montana Fish and Wildlife Commission and are informed by annual 
wolf abundance estimates from an integrated patch occupancy model (iPOM, Sells et al., 2022c) 
as well as the predictions of wolf abundance into the future under potential constant harvest 
levels. Parametric uncertainty (uncertainty surrounding the value of a parameter) from the iPOM 
estimates is propagated through to future projections, providing the Commission with plausible 
and worst-case outcomes of different levels of public harvest over the short term, i.e., five years 
into the future, on the wolf population in Montana (Parks et al., 2024).  

An alternative approach to inform wolf management and harvest decisions is through 
adaptive management. Adaptative management is appropriate for decisions that are made 
iteratively and when monitoring data are collected to learn about the outcomes from decisions, 
where monitoring data help to reduce critical uncertainties regarding ecosystem function or 
management outcomes (Walters, 1986; Williams, 2011). Management strategy evaluation (MSE) 
is one way to develop an adaptive management framework. MSE was developed by fisheries 
managers and scientists to more accurately and fully incorporate various forms of uncertainty, 
consider long-term time horizons, and add more transparency in a fisheries context (Punt et al., 
2016). It has been used routinely and has become a standard approach for complicated and 
contentious marine fisheries management situations, yet it has been underutilized in wildlife 
management (but see Bunnefeld et al., 2013, 2011). 

MSE is a forward simulation approach for testing prospective management options or 
strategies over a wide range of possible states (Punt et al., 2016). A MSE framework captures the 
‘truth’ or what is happening in the system (termed the ‘the operating model’) and the information 
available to the decision makers (termed ‘the estimation model’ or ‘management strategy’). More 
precisely, there are four main processes modeled. First, models are constructed based on current 
understanding and data to represent ‘truth’. Second, the collection of monitoring data is 
simulated from the ‘truth’ model. Third, the simulated monitoring data are fit to an estimation 
model and the next time step’s population metrics are predicted from the estimated parameters. 
Fourth, based on the estimation model results and the predictions, the decision-making process is 
simulated following a management strategy, whereby a decision is made and the implementation 
of this decision feeds back into the ‘truth’ model (Figure 1). This process continues through time. 
Additionally, each simulation through time is repeated to capture the full range of stochasticity 
and uncertainty.  
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Figure 1. Conceptual diagram of management strategy evaluation, showing the component models that are part of 
the ‘operating model’ and ‘estimation model’. On the left is the operating model, where the ‘truth’ is simulated 
along with the simulated collection of monitoring data from the ‘truth’. On the right is the estimation model or 
management strategy, where monitoring data are fit to a predictive model, a decision is made and implemented, 
and the implementation impacts the ‘truth’ model. Note that this process is repeated through time and across 
repeat simulations. iPOM, integrated patch occupancy model. 

 
Management strategies in the wolf management context are combinations of monitoring 

programs and harvest control rules (e.g., liberal or restrictive regulations applied when the 
population is above or below some threshold, respectively). The outcomes from MSE are then 
assessed in their ability to meet fundamental objectives outlined in the wolf management plan 
(Runge et al., 2013). Several performance metrics related to fundamental objectives, or other 
measures of performance, can then be tracked and summarized for each management strategy 
based on the simulations, essentially allowing for experimental application of different strategies 
to evaluate relative efficacy over the long term.  

Multiple forms of uncertainty can be captured in the MSE. For instance, uncertainty of 
regulations on realized harvest can be accounted for in simulations to reflect that regulations do 
not always prescribe exact harvest levels, i.e., partial controllability. The MSE approach is also a 
useful tool for identifying monitoring and research priorities, and for increasing the efficiency of 
monitoring programs for a given harvest control rule. The simulation structure allows for 
‘experimental’ implementation of different monitoring programs or levels of monitoring 
intensity, to examine how or if management decisions (or the population) might be affected with 
different combinations of monitoring schemes and harvest control rules. Further, incorporating 
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uncertainty in wolf population dynamics (e.g., the relative effect of harvest or density 
dependence on population trend) along with variable monitoring and harvest control rules in a 
MSE permits analyses that identify monitoring and research (value of information analyses; 
Canessa et al., 2015; Runge et al., 2011). Such analyses allow for concrete ties between 
additional data collection and management. 

OBJECTIVES 
1. Develop a MSE framework for wolves consisting of operating and estimation models to 

simulate the real world combined with simulated alternative management strategies 
(fundamental objectives, monitoring programs, and harvest control rules) and variable 
monitoring program elements. 

2. Based on these results, provide scenario outcomes to MFWP leadership and other 
decision makers about combinations of harvest control rules and monitoring program 
elements that are most likely to meet fundamental objectives over long time horizons. 

GENERAL PROGRESS 
Work on this project began in January 2024. We continue to work closely with MFWP 

staff to determine various aspects of the MSE. Discussions to date have centered on the general 
structure of the component models (Figure 1), including how to evaluate management strategies 
in terms of fundamental objectives that are not direct proxies of wolf abundance (e.g., public 
attitude objective). Further, we worked with MFWP to identify data and parameter estimates 
available to parameterize the underlying ‘truth’ or operating model. We also identified initial 
management strategies to include in the MSE, but the set will require further refinement as work 
continues.  

An initial prototype of the MSE has been developed, the structure of which will be used 
to build up each component model. Building up of the ‘truth’ model is in progress and the 
structure is expected to be finalized in the coming months. One of the estimation models for the 
MSE is iPOM (Sells et al., 2022c) since it is the current method for estimating wolf abundance 
and is used to inform management decisions. Hence, we have taken this opportunity to review 
iPOM and make updates where necessary.  
REVIEW AND UPDATES OF IPOM 

iPOM works by integrating three models to estimate wolf abundance in Montana, 
including a dynamic occupancy model, a mechanistic territory model, and a group size model 
(Sells et al., 2022c). We took this opportunity to investigate and update each model prior to 
incorporating iPOM into the MSE. The primary impetus for taking this step was to code iPOM in 
an entirely Bayesian format and convert the Bayesian estimation code to NIMBLE in R, to 
enable incorporation into the MSE simulations. Additionally, we are increasing the efficiency of 
Bayesian estimation using Bayesian updating (Applestein et al., 2022; Ellison, 2004), instead of 
refitting the entire time series each year, thereby decreasing computation time in the MSE and 
eliminating slight changes in previous year estimates every time iPOM is fit to the current year’s 
data. Updates to each iPOM model are discussed individually below. The group size model is 
discussed in greater depth, as this model is close to being finalized.  
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Dynamic patch occupancy model 
The dynamic patch occupancy model (MacKenzie, 2018) in iPOM provides an estimate 

of whether wolves are present or absent in 600 km2 grid cells across Montana. Hunter 
observations of wolf packs greater than 2 and less than 25 individuals, during the 5-week general 
rifle season (approximately late October-November), provide the observation data for the model. 
A false positive detection process is used in the occupancy model to account for potential 
misidentification or misreporting of wolves by hunters (e.g., if a coyote was identified as a wolf; 
Miller et al., 2011). To allow the model to estimate whether detections are true detections by 
hunters (wolves were present at the grid cell) or false detections, data from monitoring efforts by 
MFWP wolf specialists provide information about known packs (Sells et al., 2022c; for previous 
version of this model, see Miller et al., 2013 and Rich et al., 2013).  

We are in the process of testing various aspects of the occupancy model, such as the 
means to integrate the hunter and MFWP observations. We are also testing different covariate 
models on each of the occupancy model parameters to identify any improvements to the model’s 
predictive power (e.g., additional environmental covariates or search effort).  
Mechanistic territory model 

iPOM uses a mechanistic territory size model to predict territory size (km2;  Sells et al., 
2022a, 2021; Sells and Mitchell, 2020). The territory model is a spatially explicit, agent-based 
model that predicts territory size for packs by maximizing food resources and minimizing costs 
of travel, competition, or mortality risk. The predictions from the mechanistic territory size 
model for each ecoregion in Montana and across a range of pack densities are employed by 
iPOM (Sells et al., 2022c). The updated version of iPOM will employ these same data and 
methods but instead of directly sampling from the predicted territory sizes, we fit the predictions 
to a statistical distribution and sample from that distribution. Modeling territory size in this way 
captures a wider range of uncertainty, allowing for more variation, because a statistical 
distribution is being sampled.  

 We tested various statistical distributions and found the gamma distribution to fit the 
predicted territory size data the best. So, for each density and ecoregion, the set of mechanistic 
model territory sizes are fit to a gamma distribution, then samples from the gamma distribution 
are used in the overall wolf abundance estimates. Fitting a gamma distribution to the territory 
sizes results in nearly (within random deviations from sampling) the same estimates as the 
original iPOM in terms of territory size and overall wolf abundance. 

GROUP SIZE MODEL 
Introduction 

In Sells et al. (2022c), we discussed the future necessity of revisiting the original group 
size model (Sells et al., 2022b) that was developed for iPOM. The original model was fit to 
group size data from 2005 – 2018. Selection of covariates was based in part on the data 
anticipated to be available into the future, and in Sells et al. (2022c), we emphasized the 
importance of revisiting the model if conditions after 2018 (e.g., harvest regulations) changed 
beyond that observed from 2005 – 2018.  
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The original predictive model for group size included five covariates: pack density index 
(per 1000 km2; based on pack centroids, measured as the long-term average density over 2005 – 
2018), terrain ruggedness, harvest regulations, control removals, and ecoregion. We selected the 
long-term average for the pack density index because we were uncertain if data to measure 
annual pack densities would be available. However, we now know that additional data are 
available and anticipate these data will be available in the future, offering the opportunity to 
revise the group size model to include an annual density of packs. In addition to group size 
observation data being available, there have also been updates in covariate information. For 
instance, the original model’s categorical variable for harvest regulations was based on 2005 – 
2018 levels (ranging from no harvest to restricted and liberal harvest). Since 2021, harvest 
regulations have been further liberalized (with limits of ≤20 wolves per person, and snaring, 
electronic calls, baiting, and private land night hunting now allowed, as well as reimbursement of 
expenses). Additionally, we have found that data from Wildlife Services for timing and location 
of control removals have been limited and incomplete since 2018.  

We sought to develop and test a new group size model for iPOM given that > 5 years 
have passed since the first iteration of the group size model was presented. In this time, harvest 
regulations became more liberalized and new covariate data became available, as have the 5 
additional years of response data (pack size counts). We hypothesized that various group 
characteristics, environmental features, and human-related features would influence group size 
(Table 1). In general, we hypothesized that groups would be larger in areas with more food 
resources and areas for security cover (e.g., areas with higher greenness values [Normalized 
Difference Vegetation Index (NDVI)] and forest cover), and smaller in areas where food 
resources are more difficult to obtain (e.g., areas with higher ruggedness) and mortality risk is 
greater (e.g., areas with more roads, high building density, etc.). We included spatiotemporal 
covariates where available, which we hypothesized influenced group size through direct group 
additions (presence of pups reported) and removals (mortalities nearby) and effects on dispersal 
decisions (number of neighboring groups; Sells et al., 2022b). 
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Table 1. Hypotheses and associated covariate data analyzed for the new group size model for wolves in Montana. 

Covariate Details Hypothesized effect on 
group size 

Predicted 
effect on 
group size 

Global 
Model 
Result 

In final 
model? 

Data type 
(ST = 
spatiotemporal; 
S = spatial; T = 
temporal) 

Data source 

Pups 
Pups reported 
at year end 
(Y/N) 

Groups w/ pups are 
larger due to direct 
additions to the group 

Positive Positive Y ST 
MFWP year-end 
group monitoring 
records 

Ecoregion-II 

Categorical 
based on 
Level-II 
ecoregions 
(mountains vs 
plains) A 

Plains groups are often 
relatively new and 
easily hunted 

Negative Negative Y S 

https://www.epa.gov/
eco-
research/ecoregions  
(Omernik and 
Griffith, 2014) 

Elevation Continuous, 
1000 meters B 

Ecological differences 
across elevations leads 
to variable group sizes 

Variable None N S 
Package elevatr 
(Hollister et al., 
2023) 

Ruggedness 
Vector 
ruggedness 
measure B 

Rugged terrain makes 
prey more difficult to 
catch, leading to less 
food resources in 
rugged areas and thus 
smaller groups 

Negative Positive Y S 

Elevation data & 
vector ruggedness 
measure calculations 
(Sappinton et al., 
2007) via package 
SpatialEco (Evans, 
2018) 

NDVI 

Normalized 
Difference 
Vegetation 
Index C 

Higher NDVI often 
means more forage for 
prey, leading to greater 
food resources for 
groups and thus larger 
groups 

Positive Positive Y S 

Package MODIStsp 
(Busetto and 
Ranghetti, 2016) to 
access MODIS data  
1/16/2025 12:18:00 
PM 

Density of 
forest edge 

Km of edge 
per km2 D 

Forest edge is adjacent 
to more human-
dominated landscapes 
and thus associated 
with smaller groups 

Negative Negative Y S 

National Land Cover 
Database (U.S. 
Geological Survey, 
n.d.) 

Density of 
riparian 

Km of edge 
per km2 E 

Riparian areas provide 
habitat for prey and 
security cover for 
wolves and thus leads 
to larger groups 

Positive Positive Y S 

National 
Hydrography Dataset 
(U.S. Geological 
Survey, 2020) 

Proportion 
forest cover 

% of grid cell 
with forest 
cover 

Forest cover is 
associated with prey 
resources and security 
cover and thus leads to 
larger groups, OR, 
forest cover is 
associated with white 
tailed deer instead of 
mule deer and elk, 
supporting fewer 
wolves per group 

Positive or 
negative 

Negative Y S 

National Land Cover 
Database (U.S. 
Geological Survey, 
n.d.) 
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Proportion 
herbaceous 
cover 

% of grid cell 
with 
herbaceous 
cover 

Herbaceous cover is 
associated reduced 
security cover and thus 
leads to more 
mortalities and smaller 
groups 

Negative Negative Y S 

National Land Cover 
Database (U.S. 
Geological Survey, 
n.d.) 

Neighboring 
groups 

# of groups in 
the grid cell 
& 8 
surrounding 
cells 

Higher group densities 
lead to lower dispersal 
and thus larger groups 

Positive None N ST 
MFWP year-end 
monitoring records 

Density of 
buildings 

Km of edge 
per km2 

More human presence 
leads to more wolf 
mortalities and group 
disruptions, and thus 
smaller groups 

Negative None N S 
Microsoft Buildings 
Footprints 
(Microsoft, 2018) 

Density of 
roads 

Km of edge 
per km2 

“” Negative Potentially 
negative 

N S TIGER roads data 
(Bureau USC, 2018) 

Human 
disturbance 

Index B “” Negative  N S 

Montana Natural 
Heritage Program 
(Montana Fish, 
Wildlife and Parks, 
n.d.) 

Harvests 
nearby 

# of wolf 
harvests in the 
grid cell & 8 
surrounding 
cells 

Harvests leads to 
direct group size 
reductions and 
potential group 
dissolution/increased 
dispersals 

Negative Negative Y ST MFWP year-end 
harvest records 

Harvest 
regulations 

Categorical: 
no harvest, 
restricted, 
liberal, 
aggressive F 

Liberalized harvest 
regulations lead to 
more mortalities and 
group disruptions, and 
thus smaller groups 

Negative Negative Y T Hunting regulations 

A. Although Sells et al. (2022b) included Level-III ecoregions in their final predictive group size model, the effects of these 
finer-scale ecoregions overlapped 0; therefore, we opted to include the simplified Level-II ecoregions of mountains (western 
MT) versus plains (eastern MT) for this new analysis. 

B. We transformed several covariates from their default values to bring covariate values into less extreme differences. We 
transformed elevation by dividing meters by 1000 (such that values represent 1000’s of meters). We multiplied the 
ruggedness index by 100 units to bring the normally small values to a scale of 0 – 2.4 units. And we divided the human 
disturbance index by 1000 units to bring the normally large range to a scale of 0 – 1.63. 

C. Measured at peak green-up (Jun 15 – Jul 15), from 2005 – 2020, and averaged across years.  
D. Identified with the 2016 National Land Cover Database (mrlc.gov) as forest (deciduous, evergreen, mixed forests, and 

woody wetlands) and non-forest (remaining classes). 
E. Identified as riparian edges of waterbody boundaries, rivers, streams, and artificial paths outside waterbody boundaries. 
F. Categories: no harvest (≤2008 and 2010), restricted harvest (2009 and 2011, when statewide harvest was limited by a quota, 

seasons were shorter, bag limits were low, and trapping was prohibited), liberal harvest (2012 – 2021, when statewide 
harvest quotas were removed, seasons were longer, bag limits were higher, and trapping was allowed), and aggressive 
harvest (2022 – 2023, when snaring and night hunting became legal, bag limits increased to 20 wolves/person/year, and 
reimbursement of expenses).   
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METHODS 
Data 
To develop the new group size model, we first compiled group size data collected from 
monitoring efforts from 2005 – 2023. This included 2,110 year-end monitoring reports of group 
size, which MFWP wolf specialists classified as good, moderate, or poor-quality counts at each 
reporting year. Good quality counts were based generally on multiple data points collected 
throughout the year, e.g., using visual surveys, trail cameras, track surveys, etc. Of the 2,110 
counts, 943 (approximately 45%) were rated as good quality and served as the basis for our 
model development. Moderate and poor-quality counts represent data based on fewer 
observations throughout the year and are expected to be reported with less precision (e.g., may 
represent undercounts to some unknown degree), so were not used as data in the model. Each 
group count was also assigned an approximate group centroid associated with the group’s 
territory, based on radio collar data (where available), field surveys, and expert knowledge 
(Figure 2).  

Figure 2. Panel A: group sizes and count qualities observed in Montana, 2005 – 2023. Panel B: group size in relation 
to count quality. Points below the density plots represent individual data points. Of the good quality counts, 
observed group sizes ranged 2 – 29 and averaged 5.8 wolves, with a 50% interquartile range of 4 – 7 wolves per 
group. Panel C: group size varied by year and exhibited a general downward trend. Note that ribbons extend to 2.5 
and 97.5% quantiles (where sufficient data were available). In all panels, ‘G’ = good quality, ‘M’ = moderate quality, 
and ‘P’ = poor quality. 
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We developed the group size model by focusing on the 600-km2 iPOM grid as the sample 
unit, as our end goal was to predict group size in each grid cell for iPOM. Accordingly, we 
identified which grid cell each group centroid occurred in. If more than one centroid occurred in 
a cell that year, we calculated the mean value of group sizes therein. We then developed a matrix 
of 695 grid cells by 19 years (2005 – 2023), where each matrix cell received the associated group 
size value or an NA if no group size was available.  

For each iPOM grid cell, we next compiled data for group characteristics, environmental 
features, and human-related features that we hypothesized influenced group size (Table 1). For 
each continuous variable, we measured the mean value within the iPOM grid cell. For 
categorical variables, we assigned the grid cell to the category with greatest area (e.g., which 
ecoregion predominated).  
Model 

We used a Poisson generalized linear mixed effects model to model the size of wolf 
groups as a function of covariates. The observed good quality counts of wolf packs 𝑦𝑦𝑖𝑖,𝑡𝑡 at each 
grid cell 𝑖𝑖 in each year 𝑡𝑡 were modeled as Poisson distributed, namely 

𝑦𝑦𝑖𝑖,𝑡𝑡~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝜆𝜆𝑖𝑖,𝑡𝑡� 1 

The rate of the Poisson, 𝜆𝜆𝑖𝑖,𝑡𝑡, was modeled as arising from spatial and temporal covariates, as well 
as a random effect on each grid cell: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆𝑖𝑖,𝑡𝑡) = 𝛼𝛼 + 𝑿𝑿𝑿𝑿 + 𝜀𝜀𝑖𝑖  2 

𝜀𝜀𝑖𝑖~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0,𝜎𝜎) 

where 𝛼𝛼 is the intercept term for 𝜆𝜆𝑖𝑖,𝑡𝑡, 𝑿𝑿 is a matrix of covariates, 𝜷𝜷 is a vector of coefficient 
parameters for 𝜆𝜆𝑖𝑖,𝑡𝑡, and 𝜀𝜀𝑖𝑖 is the grid cell level effect for grid cell 𝑖𝑖 from a hyperdistribution with 
𝑆𝑆𝑆𝑆 =  𝜎𝜎 . 
Model implementation 

The group size model was fit in a Bayesian framework. We specified uninformative 
priors for all parameters. Specifically, priors on the intercept and coefficient terms (i.e., 𝛼𝛼 and 𝜷𝜷 ) 
were set to 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0, 𝑆𝑆𝑆𝑆 = 10) and the prior for the SD of grid cell level effects (i.e., 𝜎𝜎) was 
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0, 20). Models were fit in NIMBLE (NIMBLE Development Team, 2024; Valpine et 
al., 2017) and accessed through R (R Core Team, 2024). We used Program R 4.4.0 (R Core 
Team, 2024) and packages tidyverse (Wickham et al., 2019), terra (Hijmans, 2020), and sf 
(Pebesma, 2018; Pebesma and Bivand, 2023) to prepare data, package NIMBLE (NIMBLE 
Development Team, 2024; Valpine et al., 2017) to run models, and package ggplot2 (Wickham, 
2016) to plot results. For each model, we ran 3 chains for 250,000 MCMC iterations with the 
first half as burn-in and a thinning rate of 10 (to decrease file size). We assessed model 
convergence using the Brooks-Gelman-Rubin convergence statistic (Brooks and Gelman, 1998), 
ensuring 𝑅𝑅� < 1.1, and by visually inspected posterior trace plots. We plotted the mean value, 
median value, and 95% credible intervals (CRIs) of the MCMC chains to examine the density of 
the posteriors.   
Model testing and selection process 

Model testing and selection took place in two stages. The first stage reduced the global 
model based on covariate effects and WAIC (Watanabe-Akaike information criterion; Hooten 
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and Hobbs, 2015; Watanabe, 2013) and the second stage assessed the predictive ability of the 
models.  

We initiated model building by first testing a global model with all covariates included 
and assessed 85% credible intervals (CRI) of each coefficient to determine which covariates had 
no effect (85% CRIs centered on 0) and uncertain effect (85% CRIs included but were not 
centered on 0). We next tested reduced models that each omitted one of the covariates with CRIs 
overlapping 0. We considered a reduced model to support the omission of that covariate if WAIC 
decreased compared to the global model WAIC (i.e., if ∆WAIC was negative). However, if 
∆WAIC differed by <1, we considered the omission of that covariate to be uncertain and in need 
of further testing.  

We next developed two semi-final candidate models for further testing: one omitting all 
covariates identified for certain omission in the previous step, and a second model also omitting 
any covariate whose omission was uncertain (i.e., due to minimal ∆WAIC). To select a final 
model from the two semi-final models, we predicted group size based on estimated model 
parameters for each grid cell in each year. For comparison, we did the same using parameter 
estimates from the global model. For each of these three models (the global model and two semi-
final models), we then calculated the mean squared error (MSD) of predicted versus observed 
group sizes for each set of count quality classifications (i.e., good, moderate, and poor-quality 
counts, as designated by MFWP wolf specialists each year). We selected the final model as that 
which minimized MSD across all count quality classifications. We then summarized the 
percentiles of predictions off by ≤ 1, ≤ 2, and ≤ 3 wolves compared to observed group sizes.  

After identifying the final group size model, we used the model to calculate, by grid cell 
and year, the mean estimate of group size and associated standard deviation. These values will 
then replace the previous Sells et al. (2022b) group size model estimates in iPOM. 
Preliminary results 

From 2005 – 2023, MFWP monitored 41 – 147 groups per year within Montana, totaling 
2,100 group-years. Of these, 938 were good quality counts, based on 26 – 68 good quality 
observations per year. Annual mean size was 4.86 – 7.03 wolves per group, averaging 5.78 
across all years (Figure 2). Although a handful of groups were large (n = 5 groups with ≥ 20 
members), the majority were small; 80% of packs had ≤ 8 wolves and the 50% interquartile 
range was 4 – 7 wolves. 

The global model identified four covariates as having no effect (CRIs centered on 0: 
elevation, neighboring groups, density of buildings, and density of roads) and three covariates as 
having uncertain effects (CRIs included but were not centered on 0: proportion herbaceous cover, 
density of riparian, and human disturbance). Testing reduced models that omitted each of these 
seven covariates and resulted in lower WAIC for all but proportion herbaceous cover and density 
of riparian (Models Reduced A – G, Table 2). Most ∆WAICs were approximately −1.5 to −2, 
except for human disturbance, for which ∆WAIC was −0.4. Accordingly, we tested two new 
models in our final candidate set, where Model Reduced H omitted elevation, neighboring 
groups, density of buildings, density of roads, and Model Reduced I omitted these same 
parameters and human disturbance.  
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Our final tests of the global model and two semi-final models revealed that Model 
Reduced H had the lowest MSD for each count quality classification, outperforming both the 
global model and Model Reduced I (Table 3). Model Reduced H thus became the final model.  

Model H’s predictions were closely aligned with observations (Figure 3). Compared to 
the group sizes reported as good quality counts, the model successfully predicted to within +1 
wolf of the observed group sizes 55.3% of the time, ≤+2 wolves 78.8% of the time, and ≤+3 
wolves 88.9% of the time. Of the moderate quality counts (n = 509), the model successfully 
predicted to within +1 wolf of the observed group sizes 53.0% of the time, ≤+2 wolves 80.7% of 
the time, and ≤+3 wolves 91.5% of the time. Of the poor quality counts (n = 658), these values 
were 40.7%, 75.9%, and 88.2%, respectively. Accuracy did not generally vary by MFWP 
management region, grid cell, or year (Figure 3). Slight bias was observable for poor quality 
packs across years (Figures 3C), as expected given that poor quality packs are almost certainly 
an undercount of true pack sizes (our model predicted these packs were larger than reported from 
observations alone). Accordingly, the model provided good accuracy in predicted versus 
observed group sizes, regardless of the count quality classifications, and appears to help correct 
for undercounts that are probable in poor quality observations. Figures showing relative bias of 
predictions, predicted group size by year and MFWP management region, and observed vs. 
predicted group sizes can be found in the Appendix.  

Table 2. Models analyzed for the new group size model.  

Model Description WAIC Delta WAIC1 

Global All 3678.281 
 

The global model except reduced by one parameter: 
 

Reduced A Omit elevation 3675.968 -2.313 
Reduced B Omit neighboring groups 3676.275 -2.006 
Reduced C Omit density of buildings 3676.577 -1.704 
Reduced D Omit density of roads 3676.700 -1.581 
Reduced E Omit proportion herbaceous cover 3680.112 1.831 
Reduced F Omit density of riparian 3679.703 1.422 
Reduced G Omit human disturbance 3677.881 -0.400 
Semi-final models (reduced by multiple parameters): 

 

Reduced H Omit elevation, neighboring groups, 
density of buildings, density of roads 

3672.081 -6.200 

Reduced I Omit elevation, neighboring groups, 
density of buildings, density of roads, 
human disturbance 

3672.032 -6.249 

1. Compared to the global model 
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Table 3. The mean squared error (MSD) of observed versus predicted group size, across all good quality counts (G), 
moderate quality counts (M), and poor quality counts (P), along with the percentile of predicted group sizes within 
1, 2, or 3 wolves of the observed group sizes, for the global and top 2 reduced models.  

Model MSD 
G 

MSD 
M 

MSD 
P 

+/- 1 
G 

+/- 2 
G 

+/- 3 
G 

+/- 1 
M 

+/- 2 
M 

+/- 3 
M 

+/- 1 
P 

+/- 2 
P 

+/- 3 
P 

Global 5.66 5.49 5.69 56.10 78.50 88.80 55.00 77.40 88.60 40.80 72.10 88.80 
Reduced H 5.61 5.02 5.52 55.30 78.80 88.90 53.00 80.70 91.50 40.70 75.90 88.20 
Reduced I 5.79 5.13 5.70 53.70 76.70 89.10 54.40 78.30 89.30 40.70 74.50 87.10 

 
 

Figure 3. Panel A: absolute difference in predicted (Pred) versus observed (Obs) group sizes based on Model H’s 
predictions. Colors indicate the count quality, and symbols occur for each year in which an observation was 
recorded, with symbol placement jittered within the grid cell in effort to display all years of data (2005 – 2023). 
Panel B: difference in group size (observed – predicted) by MFWP management region and count quality. Solid 
vertical lines indicate the 0 intercept (perfect accuracy) and dashed vertical lines indicate the mean difference 
within that region and count quality. Values < 0 indicate predictions were greater than observations, and values > 0 
indicate the opposite. Note that five observations with a difference of >10 were omitted from this plot to constrain 
the x-axis. These five instances were abnormally large packs reported in Region 1 (packs of 20 in 2008, 20 in 2023, 
and 29 in 2019), Region 3 (a pack of 19 in 2008) and Region 4 (a pack of 15 in 2013). Panel C: mean predicted group 
size by year and count quality, with 95% confidence intervals. In all panels, ‘G’ = good quality, ‘M’ = moderate 
quality, and ‘P’ = poor quality.  
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NEXT STEPS - MSE FUTURE APPROACHES  
Currently, the ‘truth’ model simulates an age structured wolf population using survival 

and fecundity rates from the literature at the pack level. Although remote collar data are 
available, we were not able to use them to produce reliable estimates of survival through 
modeling due to a high rate of collar failures and collared wolves being harvested. Hence, we are 
using survival rates from peer-reviewed literature. There are three age classes in the ‘truth’ 
model: young of the year (pups born in the current year, <1 year old), first years (juveniles that 
were born in the previous year that are <2 years old), and adults (2 years old or older). We 
capture parametric uncertainty, as well as temporal and demographic stochasticity throughout the 
‘truth’ model (Regan et al., 2002). Future steps to the ‘truth’ model include adding immigration 
and emigration throughout the state, dispersal between packs, and simulating the spatial 
distribution of packs based on the output of updated iPOM (using estimates of occupancy and 
group size across the state).  

From the ‘truth’ model, the collection of monitoring data is simulated and fit to the 
estimation model. A simple abundance-only integrated population model (IPM; Schaub and 
Abadi, 2011) was developed as an initial prototype to build the infrastructure of the MSE. Once 
the updates to iPOM are complete, we plan to simulate requisite monitoring data and fit them to 
iPOM, generating population size estimates. Other estimation models, e.g., a full IPM, may also 
be included, if it is determined that the data are feasible to collect. Once the iPOM updates are 
finalized and included in the MSE, we plan to run trial simulations using initial management 
strategies that have already articulated. Given the trial simulation output, we plan to review the 
overall MSE structure and work with MFWP to refine or identify any other management 
strategies of interest to include.  

The simulated management strategies will be compared and evaluated in terms of the 
fundamental objectives for wolf management. The objectives that have been a part of wolf 
harvest season setting since 2010 are:  

• Maintain a viable and connected wolf population in Montana.  

• Gain and maintain authority for state of Montana to manage wolves.  

• Maintain positive and effective working relationships with stakeholders.  

• Reduce wolf impacts on livestock and big game populations.  

• Maintain sustainable hunter opportunities for wolves.  

• Maintain sustainable hunter opportunities for ungulates.  

• Increase broad public acceptance of sustainable harvest and hunter 
opportunities as part of wolf conservation.  

• Enhance open and effective communication to better inform decisions.  

• Learn and improve as we go.  
To capture how strategies perform, we plan to develop performance metrics related to 

each of the above fundamental objectives. Objectives related directly to wolf abundance are 
straightforward, as they can be measured in terms of the simulated wolf population abundance 
under each management strategy. Metrics for big game populations and livestock depredations 
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may be associated with wolf abundance, but there is uncertainty about how much of an effect 
wolf abundance (as compared to other factors) has on either, uncertainty that can be captured by 
the MSE. The relationship between wolf metrics and public attitude or working relationship 
objectives need to capture uncertainty in the drivers of public attitudes. As such, we plan to work 
closely with human dimensions experts to ensure we are capturing these metrics appropriately as 
they relate to wolf abundance. Given the suite of objectives and performance metrics, the MSE 
simulation results can be used to assess tradeoffs between conflicting objectives over long time 
scales.   
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APPENDIX 
 

 

Figure Appendix A1. Panel A: relative bias (calculated as mean((observed – predicted)/observed) by grid cell across 
years. Panel B: predicted group size by year, region, count quality (ribbons depict 2.5 and 97.5% quantiles). Panel C: 
mean difference in group size (observed – predicted) by region and year. Solid horizontal lines indicate the 0 
intercept (perfect accuracy); values < 0 indicate predictions were greater than observations, and values > 0 indicate 
the opposite. In all panels, ‘G’ = good quality, ‘M’ = moderate quality, and ‘P’ = poor quality. 
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Figure Appendix A2. Mean predicted group size by year and MFWP management region (1 – 7, panels), based on 
all grid cell predictions (whether a pack was reported there or not). Ribbons depict the 2.5 and 97.5% quantiles. 
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Figure Appendix A3. Observed versus predicted group sizes by year and count quality for reported packs each year. 
‘G’ = good quality, ‘M’ = moderate quality, and ‘P’ = poor quality. 

 


