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EXECUTIVE SUMMARY 
 
Wolf recovery in Montana began in the early 1980’s. The federal wolf recovery goal of 30 breeding pairs 
for 3 consecutive years in the Northern Rocky Mountains (NRM) of Montana, Idaho and Wyoming was 
met by 2002. Montana’s state Wolf Conservation and Management Plan of 2004 was based on the work 
of a citizen’s advisory council and was approved by the United States Fish and Wildlife Service (USFWS). 
The wolf population in the NRM tripled between the time recovery goals were met and when wolves 
were ultimately delisted by congressional action during 2011. At present, Montana Fish, Wildlife and 
Parks (FWP) implements the 2004 state management plan using a combination of sportsman license 
dollars and federal Pittman-Robertson funds (excise tax on firearms, ammunition, and hunting 
equipment) to monitor the wolf population, regulate harvest, collar packs in livestock areas, coordinate 
and authorize research, and direct problem wolf control under certain circumstances.  
 
The primary means of monitoring wolf distribution, numbers, and trend in Montana is now Integrated 
Patch Occupancy Modeling, or “iPOM.” The iPOM method uses annual hunter effort surveys, known 
wolf locations, habitat covariates, and estimates of wolf territory size and pack size to estimate wolf 
distribution and population size across the state. iPOM estimates of wolf population size are the 
preferred monitoring method due to accuracy, confidence intervals, and cost efficiency. The 2020 iPOM 
estimate of wolf population size was 1,177 wolves (95% C.I. = 1,069 – 1,290; Fig. 1). 
 
Wolf hunting was recommended as a management tool in the 2004 Montana Wolf Conservation and 
Management Plan. Calendar year 2020 included parts of two hunting/trapping seasons for wolves. 
During calendar year 2020, 138 wolves were harvested during the spring, and 167 wolves were 
harvested during the fall for a total of 305 (Fig. 1). Sales of license year 2020/21 wolf hunting licenses 
generated $297,487 for wolf monitoring and management in Montana.  
 
Wildlife Services (WS) confirmed the loss of 99 livestock to wolves during 2020, including 62 cattle, 32 
sheep, and 5 lamas; 4 livestock guard dogs were also killed by wolves (Fig. 1). This total was similar to 
numbers during 2011-2019. During 2020 the Montana Livestock Loss Board paid $75,818.75 for livestock 
that were confirmed by WS as killed by wolves or probable wolf kills. Fifty-two wolves were killed in 
response to depredation or to reduce the potential for further depredation. Of the 52 wolves, 47 were 
killed by WS and 5 were lawfully taken by private citizens. FWP’s Wolf Specialists radio-collared 9 wolves 
during 2020 to meet the legislative requirement for collaring livestock packs and to aid in population 
monitoring and research efforts. 
 
Montana’s wolf population grew steadily from the early 1980’s when there were less than 10 in the 
state.  After wolf numbers approached 1,250 in 2011 and wolves were delisted, the wolf population has 
decreased slightly and may be stabilizing at about 1,150 wolves (Fig. 1). Stabilization of population size 
may be related to the onset of wolf hunting and trapping seasons, whereas reduced livestock 
depredation in recent years is most likely related to more aggressive depredation control actions 
(DeCesare et al. 2018). Montana’s wolf population remains well above requirements (7 – 8x). Wolf 
license sales have generated $4.4 million for wolf management and monitoring since 2009.  
 
 
 



vii 

 
 
Figure 1. Integrated Patch Occupancy Modeling (iPOM) estimated number of wolves in Montana 
(including 95% credible intervals) and verified minimum number of wolves residing in Montana 
in relation to state wolf plan requirements along with trends in wolf harvest and confirmed 
livestock losses due to wolves, 1998 – 2020.   
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1. BACKGROUND 
 
Wolf recovery in Montana began in the early 1980’s. Wolves increased in number and 
distribution because of natural emigration from Canada and successful federal and tribal efforts 
that reintroduced wolves into Yellowstone National Park and the wilderness areas of central 
Idaho. The federal wolf recovery goal of 30 breeding pairs for 3 consecutive years in Montana, 
Idaho and Wyoming was met during 2002, and wolves were declared to have reached biological 
recovery by the U.S. Fish and Wildlife Service (USFWS) that year. During 2002 there were a 
minimum of 663 wolves and 43 breeding pairs in the Northern Rocky Mountains (NRM).  
 
The Montana Gray Wolf Conservation and Management Plan was approved by the USFWS in 
2004. Nine years after having been declared recovered and with a minimum wolf population of 
more than 1,600 wolves and 100 breeding pairs in the NRM, in April 2011, a congressional 
budget bill directed the Secretary of the Interior to reissue the final delisting rule for NRM 
wolves. On May 5, 2011 the USFWS published the final delisting rule designating wolves 
throughout the Distinct Population Segment (DPS), except Wyoming, as a delisted species.  
 
Beginning with delisting in May 2011, the wolf was reclassified as a Species in Need of 
Management in Montana. Montana’s laws, administrative rules, and state plan replaced the 
federal framework. The Montana Wolf Conservation and Management Plan is based on the 
work of a citizen’s advisory council. The foundations of the plan are to recognize gray wolves as 
a native species and a part of Montana’s wildlife heritage, to approach wolf management 
similar to other wildlife species such as mountain lions, to manage adaptively, and to address 
and resolve conflicts. As noted in the State Plan, “Long-term persistence of wolves in Montana 
depends on carefully balancing the complex biological, social, economic, and political aspects of 
wolf management.” 
 
At present, Montana Fish, Wildlife and Parks (FWP) implements the state management plan 
using a combination of sportsman license dollars and federal Pittman-Robertson funds (excise 
tax on firearms, ammunition, and hunting equipment) to monitor the wolf population, regulate 
sport harvest, coordinate and authorize research, and direct problem wolf control under certain 
circumstances. Several state statutes also guide FWP’s wolf program. FWP and partners have 
placed increasing emphasis on proactive prevention of livestock depredation. USDA Wildlife 
Services (WS) continues to investigate injured and dead livestock, and FWP works closely with 
them to resolve conflicts. Montana’s Livestock Loss Board compensates producers for losses to 
wolves and other large carnivores.  
 
Montana wolf conservation and management has transitioned to a more fully integrated 
program since delisting. With wolf population level securely above requirements for over a 
decade, FWP continues to adapt the wolf program to match resources and needs. For years, 
when the population was small and wolves were listed, a “wolf weekly” report was issued, 
detailing all depredations, collaring, control and known mortalities. That level of detail and its 
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associated expense is no longer warranted, and the information is now reported annually. This 
allows limited personnel time and conservation dollars to be allocated more effectively.  
 
Population monitoring techniques have also changed. Wolf packs were intensively monitored 
year-round beginning with their return to the northwestern part of Montana in the 1980’s. 
Objectives for monitoring during the period of recovery were driven by the USFWS’s recovery 
criteria – 30 breeding pairs for 3 consecutive years in Montana, Idaho, and Wyoming. Similar 
metrics of population status were used from the time recovery criteria were met in 2002, 
through delisting in 2011, and for the 5 years when the USFWS retained oversight after 
delisting. These population monitoring criteria and methods were appropriate and achievable 
when the wolf population was small and recovering. For instance, in 1995, when wolves were 
reintroduced into Yellowstone National Park and central Idaho, the end-of-year count for 
wolves residing in Montana was 66. In the early years, most wolf packs had radio-collared 
individuals and intensive monitoring was possible to identify new packs and most individuals 
within packs. However, in later years, the minimum count of wolves approached or exceeded 
500 individuals distributed across more than 25,000 square miles of mostly rugged and remote 
terrain in western Montana. Therefore, the ability to count every pack, every wolf, and every 
breeding pair has become expensive, unrealistic, and unnecessary. Consequently, FWP has 
moved to more cost-effective methods for monitoring wolves. These methods can be more 
accurately described as population estimates that account for uncertainty (confidence 
intervals), as opposed to a minimum count where the end result, at this time when populations 
are large, reflects total effort (and dollars spent) as much as population numbers. 
 
FWP first began considering alternative approaches to monitoring the wolf population in 2006 
through a collaborative effort with the University of Montana Cooperative Wildlife Research 
Unit. The primary objective was to find an alternative approach to wolf monitoring that would 
yield statistically reliable estimates of the number of wolves, the number of wolf packs, and the 
number of breeding pairs (Glenn et al. 2011). Ultimately, a method applicable to a sparsely 
distributed and elusive carnivore population was developed that used hunter observations as a 
cost-effective means of gathering biological data to estimate the area occupied by wolves in 
Montana - “Patch Occupancy Modeling” (POM; Rich et al. 2013a) and most recently “Integrated 
Patch Occupancy Modeling” (iPOM; Sells et al. (2020a)  
 
iPOM is a modern, scientifically valid, and financially efficient means of monitoring wolves. 
iPOM is the best and most efficient method to document wolf population numbers and trend at 
this point in time. FWP is confident that the wolf population estimate and trend that iPOM 
provides is sufficient and scientifically valid evidence that can be used to assess wolf status 
relative to the criteria outlined in Montana’s Wolf Conservation and Management Plan. 
Minimum counts and pack tables are no longer reported. Instead, the more appropriate and 
efficient techniques that have been in development for a decade are being used. If new and 
improved techniques become available in the future, those methods may be implemented 
when appropriate.   
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2. WOLF POPULATION MONITORING 
 

2.1 Wolf Distribution and Numbers via Integrated Patch Occupancy Modeling 

We used an Integrated Patch Occupancy Model (iPOM) to estimate the distribution and number of 
wolves in Montana (Sells et al. 2020). With iPOM, an occupancy model estimates the extent of wolf 
distribution in Montana, and a territory model predicts territory sizes; together, these models predict 
the number of packs in a given area (Fig. 2). A group size model predicts pack sizes. Total abundance 
estimates are derived by combining the estimated number of packs and pack sizes, while also 
accounting for lone and dispersing wolves.  

 

 

Figure 2. Schematic for method of estimating the area occupied by wolves, number of wolf packs 
and number of wolves in Montana, 2007 – 2020 using an Integrated Patch Model. Graphs show 
statewide estimates over time. Ribbons indicate 95% credible intervals. 
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Integrated Patch Occupancy Modeling Methods 

Occupancy Model 

To predict where wolves occurred in Montana each year from 2007 – 2019, we fit a multi-
season false-positives occupancy model in a Bayesian context (Bassing et al. 2019). This work 
built on an earlier occupancy model (Miller et al. 2013, Rich et al. 2013, Inman et al. 2020). 
Following those authors, we created an observation “iPOM grid” for Montana as 600 km2 cells. 
We assigned locations of wolves in packs to grid cells, based on monitoring effort by MFWP 
Wolf Specialists and wolf sightings reported by hunters each fall. Wolf Specialists monitored 
packs each year to verify presence using trail cameras, visual observations, and telemetry 
collars, and used these data to demarcate approximate territory centroids for packs. MFWP 
conducted annual Hunter Harvest Surveys of a random sample of 50,000 – 80,000 resident deer 
and elk hunters annually to obtain wolf sighting reports. Hunters spent 1.8 – 2.2 million hunter 
days each fall pursuing deer and elk (fwp.mt.gov), providing many observers across Montana. 
Hunters were queried about dates and locations of any sightings of groups of 2 – 25 wolves.  

To develop encounter histories, we divided the 5-week general rifle season (occurring each year 
around late Oct through Nov or early Dec) into one-week encounter periods and mapped 
locations of pack centroids and hunter observations for each week. Based on past work (Miller 
et al. 2013, Rich et al. 2013, Inman et al. 2020), we included model covariates for detection as: 
1) hunter days per km2 in each hunting district (an index to spatial effort), 2) proportion of 
mapped wolf observations (a correction for effort, accounting for number of hunter 
observations with coordinates versus total reported, including any sightings with vague location 
descriptions), 3) densities of low-use forested and non-forested roads (indices of spatial 
accessibility), 4) a spatial autocovariate (proportion of neighboring cells with wolves seen out to 
a mean dispersal distance of 100 km), and 5) patch area sampled (because smaller cells on the 
border of Montana, parks, and tribal lands have less hunting activity and therefore less 
opportunity for hunters to see wolves). We also included cell size as a nuisance parameter to 
account for varying cell sizes. Model covariates for occupancy, colonization, and local extinction 
included a principal component constructed from several autocorrelated environmental 
covariates (percent forest cover, slope, elevation, latitude, percent low use forest roads, and 
human population density), and recency (number of years with verified pack locations in the 
previous 5 years). 

Using these pack locations and model covariates, we fit the multi-season false-positives 
occupancy model to estimate psi, the probability of occupancy (ψ). We used pack centroids to 
estimate probabilities of false positives, true positives, and false negatives (Miller et al. 2013). 
We estimated ψ for tribal lands and national parks, where no hunter survey data were 
available, via modeled covariates.  

We used Markov chain Monte Carlo (MCMC; Brooks 2003) methods in a Bayesian framework to 
fit the occupancy model using program R 3.4.1 (R Core Team 2020) and package rjags (Plummer 
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et al. 2019) that calls on program JAGS 4.2.0 (Plummer 2003). We ran 3 chains for 10,000 
iterations, after an adaptation phase of 10,000 iterations and a burn-in of 10,000 iterations. We 
did not thin the MCMC chains.  

Territory Model 

We used a recently developed mechanistic territory model to predict territory size. Full details 
are available in Sells and Mitchell 2020 and Sells et al. 2020, 2021. The territory model was a 
spatially-explicit, agent-based model representing the hypothesis that wolves are adapted to 
select economical territories that maximize food benefits and minimize costs of travel, 
competition, and mortality risk. After calibrating the model using wolf location data collected 
from 2014 – 2018 (Sells et al. 2020), the model provided territory size predictions through 
simulations in NetLogo 6.1.1 (Wilensky 1999).  

The model demonstrated the strong effect of competition on resulting space use (Sells and 
Mitchell 2020; Sells et al. 2020, 2021). Accordingly, we applied the model to predict territory 
sizes at a wide range of possible pack densities and resulting levels of competition. We used a 
density identifier model (Sells et al. 2020) to predict levels of competition in each area of 
Montana for each year. We then used the territory sizes predicted at the given level of 
competition as estimates of territory size in each area of the state. 

Group Model 

We used a recently-developed group size model (Sells et al. 2020) to predict pack sizes in each 
600 km2 iPOM grid cell. The model was based on mechanisms hypothesized to influence wolf 
pack size and developed using 14 years of wolf pack data. The generalized linear mixed effects 
model included effects of pack density, terrain ruggedness, harvest intensity, and control 
removals. Pack density was the long-term (2005 – 2018) mean pack density in the iPOM grid 
cell, which served as an index to density trends (Sells et al. 2020). Ruggedness was terrain 
ruggedness in the iPOM grid cell. Harvest intensity was categorized as “none” when no harvest 
was allowed, “restricted” if 2009 and 2011 rules were followed (statewide harvest was limited 
by a quota, seasons were shorter, bag limits were low, and trapping was prohibited), and 
“liberal” if 2012 – 2020 rules were followed (statewide harvest quotas were removed, seasons 
were longer, bag limits were higher, and trapping was allowed; fwp.mt.gov). Control removals 
were reported numbers of wolves removed for depredations in the iPOM grid cell that year. 
Ecoregion defined in which ecoregion the iPOM grid cell fell (epa.gov). The unique identifier for 
the iPOM grid cell was included as a random effect to account for repeated observations among 
years. We applied the model to each iPOM grid cell, each year, to predict local pack size. 

Model Integration  

We estimated numbers of packs and wolves for each year, 2007 – 2020, by combining 
predictions from the 3 models (Fig. 2). We first calculated mean estimated occupancy (𝜓𝜓�) 
across iPOM grid cells, then calculated area occupied (areaoccupied) as: 
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𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  𝜓𝜓� × ∑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

where ∑gridarea was the sum of grid cell areas. We calculated number of estimated packs as: 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ÷ 𝑡𝑡𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

where values for territorysize were drawn with replacement for each iteration of the MCMC 
chain from the distribution of territory sizes predicted by the territory model at the specific grid 
cell. Values for territorysize were therefore spatially explicit and biologically appropriate to local 
conditions each year and accounted for uncertainty. We then calculated number of wolves as: 

𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =  𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

where lonerate accounted for lone and dispersing wolves. For packsize we drew for each iteration 
of the MCMC chain a value from the distribution of group sizes predicted at the specific grid 
cell. This provided spatially explicit and biologically appropriate values for local conditions each 
year while incorporating model uncertainty about pack size. We modeled lonerate by drawing for 
each iteration of the MCMC chain values from a normal distribution assuming a mean of 1.125 
and standard deviation of 0.025. This yielded a loner/disperser rate of 12.5% and incorporated 
variation and uncertainty around this rate, as 95% of values drawn were 7.6 – 17.4%. We 
selected these values based on studies documenting that 10 – 15% of wolf populations are 
comprised of lone or dispersing wolves (Fuller et al. 2003). This is consistent with Idaho’s 
calculations for lone wolves (Holyan et al. 2013) and slightly more conservative than 
Minnesota’s calculations, which add 15% (Erb et al. 2018).  

To account for uncertainty and calculate credible intervals (CI’s) for all parameters, we retained 
posterior estimates of 10,000 values for each and calculated the median value and 2.5% and 
97.5% values (creating 95% CI’s) for areaoccupied, territorysize, packsize, Npacks, and Nwolves.  We 
calculated density of packs per 1,000 km2, wolves per 1,000 km2, and population growth 
(lambda, λ).  

We repeated these calculations for MFWP management regions by completing each step 
described above at each subsetted group of grid cells by region. Grid cells were categorized by 
the region in which the majority of their areas fell.  

 

Integrated Patch Occupancy Modeling Results 

Area Occupied 

Each year (2007 – 2020), 50,026 – 82,375 hunters responded annually to the wolf sighting 
surveys. From their reported sightings, 979 – 3,469 locations of 2 – 25 wolves were mapped 
each year. Percent of hunters reporting a wolf sighting ranged from 4.4% (2020) to 7.5% (2011). 



7 

From 2007 – 2020, estimated area occupied by wolf packs in Montana ranged from 38,719 km2 
(95% CI = 33,162 – 44,909) in 2007 to 77,396 km2 (95% CI = 72,025 – 83,472) in 2012 (Fig. 3).  

 

 

Figure 3. Estimated total area occupied (km2) by wolves in Montana, 2007 – 2020. Ribbon 
indicates 95% credible interval. 

 

Territory Size 

Estimated territory size varied across time and space (Fig. 4). Overall, territory size was 
estimated to be largest in southwest MT and second largest in areas in and around Glacier 
National Park and the Bob Marshall Wilderness. Territories were estimated to be smaller in 
northwest MT and the Bitterroot. Territory size was greatest in 2007 and dropped thereafter, 
and has remained largely stable in the past decade. 
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Figure 4. Estimated mean territory size (km2) of wolves in Montana, 2007 – 2020. Ribbon 
indicates 95% credible interval. 

 

Group Size 

Estimated pack size also varied (Fig. 5). Mean pack sizes were larger in earlier years (prior to 
harvest) and have since declined by approximately 1 wolf per pack, on average. Mean pack size 
was estimated to be similar across Montana (an approximate difference of < 1 wolf per pack in 
most years). 
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Figure 5. Estimated mean pack size of wolves in Montana, 2007 – 2020. Ribbon indicates 95% 
credible interval.  

 

Estimated Number of Packs and Wolves 

Estimated numbers of packs and wolves varied through time (Fig. 6; Table 1). The population 
was estimated to have been smallest in the first year of our analysis (2007), with 91 packs (95% 
CI = 76 – 108) and 654 wolves (95% CI = 545 – 773). Population growth was positive through 
2011 (Fig. 6). Total wolf numbers peaked in 2011 with 187 packs (95% CI = 170 – 206) and 1,252 
wolves (95% CI = 1,136 – 1,382). This peak coincided with the first years of harvest 
management in Montana, after which the population declined by 6.0% in total wolf abundance 
between 2011 and 2020. 

Population growth rate alternated from slightly positive and slightly negative each year (Fig. 7). 
From 2016 – 2020, the population appears to have become somewhat stabilized with an 
average of 191 packs and 1,141 wolves per year.  

Estimated numbers of packs and wolves varied spatially (Fig. 6). Pack and wolf abundances 
were consistently greater in MFWP Region 1, followed by Regions 2 and 3. Regions 4 – 7 each 
contained only ≤ 1 – 9% of packs and 1 – 7% of wolves.  
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Wolf densities varied over space and time (Fig. 8). Densities were estimated to be greatest in 
MFWP Region 1 (ranging 6.42 – 13.31 wolves per 1,000 km2 from 2007 – 2020), followed by 
Region 2 (6.62 – 12.44) and Region 3 (3.24 – 5.07). Regions 4 – 7 had ≤ 1.41 wolves per 1,000 
km2. Maps of pack and wolf densities demonstrate close alignment between known packs, 
locations of wolf harvests, and predictions from iPOM (Fig. 8).  

 

Table 1. Estimated area occupied by wolves (km2), number of wolf packs, and number of wolves in 
Montana, 2007 – 2020. Annual numbers were based on best available information and were 
retroactively updated as patch occupancy modeling incorporated more information each year. 

Year Area 
Occupied 

LCI Area 
Occupied 

UCI Area 
Occupied Packs LCI 

Packs 
UCI 

Packs Wolves LCI 
Wolves 

UCI 
Wolves 

2007 38,719 33,162 44,909 91 76 108 654 545 773 
2008 49,409 43,922 55,658 119 103 136 847 733 972 
2009 61,284 55,507 67,562 152 136 172 1,021 908 1,151 
2010 63,615 58,356 69,367 161 144 180 1,144 1,025 1,275 
2011 71,598 66,472 77,317 187 170 206 1,252 1,136 1,382 
2012 77,396 72,025 83,472 204 186 224 1,199 1,092 1,316 
2013 76,931 71,688 82,796 204 186 224 1,204 1,096 1,323 
2014 71,805 66,680 77,413 190 172 209 1,127 1,020 1,242 
2015 74,377 69,514 79,661 199 182 218 1,184 1,078 1,300 
2016 70,263 65,577 75,293 188 171 207 1,119 1,017 1,234 
2017 69,084 64,731 73,984 185 169 203 1,107 1,008 1,223 
2018 71,099 66,517 76,027 192 175 211 1,147 1,042 1,262 
2019 71,523 67,021 76,426 193 176 211 1,153 1,049 1,266 
2020 73,463 68,754 78,958 197 180 217 1,177 1,069 1,290 
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Figure 6. Estimated number of packs and wolves in Montana and by MFWP Administrative 
Region, 2007 – 2020. Ribbons indicate 95% credible intervals.  
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Figure 7. Population growth rate for wolves in MFWP Administrative Regions 1 – 5 and the 
state, 2008 – 2020. Values <1 indicate a declining population, whereas values >1 indicate a 
growing population. Ribbons indicate 95% credible intervals. 
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Figure 8. Estimated pack and wolf densities in Montana, 2020, per 1,000 km2. Orange points 
demarcate territory centroids identified through monitoring in 2020 (pack density map), 
whereas red points demarcate reported harvest locations in 2020 (wolf density map). 
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3. WOLF MANAGEMENT 
 
3.1 Regulated Public Hunting and Trapping  
 
Regulated public harvest of wolves was recommended by the Governor’s Wolf Advisory Council 
and included in Montana’s Wolf Conservation and Management Plan that was approved by the 
USFWS during 2004. FWP has developed and implemented wolf harvest strategies that 
maintain a recovered and connected wolf population, minimize wolf-livestock conflicts, reduce 
wolf impacts on low or declining ungulate populations and ungulate hunting opportunities, and 
effectively communicate to all parties the relevance and credibility of the harvest while 
acknowledging the diversity of values among those parties. The Montana public has the 
opportunity for continuous and iterative input into specific decisions about wolf harvest 
throughout the public season-setting process. Wolf seasons are to be reviewed every other year 
by the Fish and Wildlife Commission during December (proposals) and February (final decisions). 
This timing allows discussion of ungulate and wolf seasons during the same Commission meetings.    
 
At the close of the 2020-21 wolf season (2020 License Year) on March 15, 2021, the harvest 
totaled 327 wolves taken during the 2020-21 season, including 169 taken by hunters (51.6%) and 
158 taken by trappers (48.3%). The 2020-21 season yielded the highest wolf harvest on record. 
Eighty-one more wolves were harvested during 2020-21 season than the average during the 
previous 8 wolf seasons when both hunting and trapping were allowed (2012-2019). Most of the 
increase over the 8-year average occurred in Regions 1, 2, and 3 via trapping (Table 2). Statewide 
wolf population appears to have peaked in 2013 and has declined slightly since then, appearing to 
stabilize at around 1,150 wolves (Fig. 9). The total calendar-year 2020 wolf harvest in Montana was 
305, including 136 wolves harvested during spring of the 2019-20 season and 169 wolves 
harvested during fall of the 2020-21 season.  
 
 
Table 2. Change in level of wolf harvest in Montana between the 2012-2019 seasons and the 2020 
season by FWP Region and type of harvest. 
 

 
 

2012-2019 Average   2020 Season Change 

 R1 R2 R3 R4 All  R1 R2 R3 R4 All  R1 R2 R3 R4 All 
Hunt 46 33 60 10 149  48 40 69 12 169  2 7 9 2 20 
Trap 43 31 14 9 97  83 37 31 7 158  40 6 18 -2 61 
Total 89 65 74 19 246  131 77 100 19 327  43 13 27 0 81 
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Figure 9. Estimated wolf population size based on known mortalities anchored to December 31 
Integrated Patch Occupancy Modeling estimates, 2007-2020.  
 
During 2020, Montana sold 15,994 resident wolf hunting licenses and 2,393 non-resident wolf 
hunting licenses. Three bills passed by the 2019 legislature lowered the price of wolf hunting 
licenses in 2020.  In calendar year 2020 the price of a resident wolf hunting license dropped from 
$19 to $12 and a discounted $10 wolf hunting license was offered with the purchase of a 
sportsman’s tag.  A nonresident wolf hunting license cost $50 but a discounted nonresident wolf 
hunting license was offered for $25 with the purchase of a sportsman’s tag.  Sale of these wolf 
licenses generated $298,864 for wolf management and monitoring in Montana (Fig. 10). Total 
funding generated for wolf monitoring and management by the sale of wolf hunting licenses from 
2009-2020 is over $4.4 million. Because trapping licenses for both residents and non-residents are 
not wolf-specific, FWP cannot quantify the financial contribution that wolf trapping generates.  
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Figure 10. Dollars generated for wolf conservation and management through sales of wolf 
hunting licenses in Montana, 1998-2020.  
 
3.2 Wolf – Livestock Interactions in Montana 
 
Montana wolves routinely encounter livestock on both private land and public grazing 
allotments. Wolves are opportunistic predators, most often seeking wild prey. However, some 
wolves learn to prey on livestock and teach this behavior to other wolves. The majority of cattle 
and sheep wolf depredation incidents confirmed by USDA Wildlife Services (WS) occur on 
private lands. The likelihood of detecting injured or dead livestock is probably higher on private 
lands where there is greater human presence than on remote public land grazing allotments. 
The magnitude of under-detection of loss on public allotments is unknown. Most cattle 
depredations occur during the spring or fall months while sheep depredations occur more 
sporadically throughout the year. 
 
Wolf Depredation Reports 
Wildlife Service’s workload increased through 2009 as the wolf population increased and 
distribution expanded (Fig. 11). The number of depredation reports received since those years 
has declined from 233 in FFY 2009 to approximately 100 or less from FFY14-FFY20. That trend 
held steady during FFY 2020, when 105 reports were received (Fig. 11). Since 1997, about 50% 
of wolf depredation reports received by WS have been verified as wolf-caused. During FFY 
2020, 60% of reports were verified as wolf depredation, slightly higher than the long-term 
average.  
 

 $-

 $100,000

 $200,000

 $300,000

 $400,000

 $500,000

 $600,000

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Wolf License Dollars 



17 

 
 
 
Figure 11. Number of complaints received by USDA Wildlife Services as suspected wolf damage 
and number of complaints verified as wolf damage, Federal Fiscal Year 1997-2020. 
 
Wolf Depredation Incidents and Responses During 2020 
Wildlife Services confirmed that, statewide, 62 cattle, 32 sheep, 5 lamas, and 4 livestock guard 
dogs were killed by wolves during 2020. Wildlife Services also determined that an additional 14 
cattle and 5 lamas were probable wolf kills. Total confirmed cattle and sheep losses were 
similar to 2011-2019 numbers, however the number of cattle has increased whereas the 
number of sheep has decreased (Fig. 12). Many livestock producers reported “missing” 
livestock and suspected wolf predation. Others reported indirect losses including poor weight 
gain and reduced productivity of livestock. There is no doubt that there are undocumented 
losses.  
 
To address livestock conflicts and to reduce the potential for further depredations, 52 wolves 
were killed during 2020 (Fig. 12). This was lower than the average number of wolves removed 
due to depredation since meeting biological recovery goals in 2002 (Avg. = 70/year) and since 
delisting in 2011 (Avg. = 67/year). Federal and state regulations since 2009 have allowed private 
citizens to kill wolves seen in the act of attacking, killing, or threatening to kill livestock; from 
2009-2020 an average of 11 wolves have been taken by private citizens each year. Fourty-seven 
wolves were removed in control actions by USDA Wildlife Services during 2020, five wolves 
were killed by private citizens when wolves were seen chasing, killing, or threatening to kill 
livestock. The general decrease in livestock depredations since 2009 (Fig. 12) may be a result of 
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several factors, primarily more aggressive wolf control in response to depredations (DeCesare 
et al. 2018). 

 
 
 
Figure 12. Number of cattle and sheep killed by wolves and number of wolves removed 
through agency control and legal depredation-related take by private citizens, 2000-2020.  
 
Montana Livestock Loss Board Payments 
The Montana Wolf Conservation and Management Plan called for creation of this Montana-
based program to address the economic impacts of verified wolf-caused livestock losses. The 
plan identified the need for an entity independent from FWP to administer the program. The 
purposes of the MLLB are 1) to provide financial reimbursements to producers for losses caused 
by wolves based on the program criteria, and 2) to proactively apply prevention tools and 
incentives to decrease the risk of wolf-caused losses and minimize the number of livestock 
killed by wolves through proactive livestock management strategies. The Loss Mitigation 
element implements a reimbursement payment system for confirmed and probable losses that 
are verified by USDA Wildlife Services. Indirect losses and costs are not directly covered. Eligible 
livestock losses are cattle, calves, hogs, pigs, horses, mules, sheep, lambs, goats, llamas, and 
guarding animals. Confirmed and probable death losses are reimbursed at 100% of fair market 
value. Veterinary bills for injured livestock that are confirmed due to wolves may be covered up 
to 100% of fair market value of the animal when funding becomes available.  
 
Reimbursement totals for CY2020 wolf depredations were $75,818.75 paid to 40 livestock 
owners on 101 head of livestock and 4 dogs. These numbers differ slightly from the WS 
confirmed losses due to wolves because reimbursements are also made for probable wolf 
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depredations and tallied by calendar year rather than federal fiscal year. By comparison, 
confirmed and probable losses totaled $97,526.97 from grizzly bears and $14,192.20 from 
mountain lions during 2020.  
 
FWP Collaring of Livestock Packs 
State Statute 87-1-623 requires Montana Fish, Wildlife and Parks to allocate wolf license dollars 
toward collaring wolf packs in livestock areas. The purpose of these efforts is to be able to more 
readily understand which wolf pack may have been involved in a livestock depredation and so 
that USDA Wildlife Services can be more efficient and effective at controlling packs that 
depredate on livestock. FWP employs five wolf specialists located in Regions 1, 2, 3, 4, and 5 
(Appendix 1) along with seasonal technicians in Regions 1 and 2.  Wolf specialists and 
technicians capture wolves and deploy collars during winter helicopter capture efforts and 
summer/fall trapping efforts. During 2020, FWP wolf specialists captured and collared 9 wolves 
(Table 3). USDA Wildlife Services also captured and collared 16 additional wolves for a total of 
25 statewide by both agencies.   
 
 Table 3. Wolves captured and radio-collared by FWP Wolf Specialists during 2020. 

 
   
 
 
 
 
 
 

Proactive Prevention of Wolf Depredation 
 
In Northwest Montana, proactive depredation prevention work continued in the Trego area 
with the third grazing season of the Range Rider program.  The Trego Range Rider Program was 
collaboratively funded and staffed by Natural Resources Defense Council; Defenders of Wildlife; 
Vital Ground; USDA AHPIS Wildlife Services; Montana Fish, Wildlife & Parks; U.S. Forest Service; 
and six livestock producers.  The desired outcomes were to mitigate producer-predator 
conflicts, reduce cattle losses, reduce wolf and grizzly bear mortalities, find livestock carcasses 
and remove them, document presence of predators, and alert producers of predators among 
the herds.  Jessianne Castle was the new Ranger Rider, covering 6 allotments in northwestern 
Montana on the Kootenai National Forest and Jim Creek state lease.  Castle traveled the 
allotments by vehicle and then on horseback, camping out on the allotments during the week.  
She notified ranchers and FWP about carnivore activity and set survey cameras to help monitor 
carnivore presence.  Cattle were present on the allotments located within the territories of the 
Lydia pack, the Swamp Creek pack, and the Good Creek Pack.  There were no confirmed wolf 
depredations in any of the allotments, though there was one cow mortality on private land near 
one of the allotments that remains uncofirmed. The ranchers provided positive feedback of the 
program, and said they believed having a Range Rider presence in the area was important.  
They also thought it was a large area for one person to cover and would be interested in 

 Helicopter Summer/Fall Total 
Region 1 0 1 1 
Region 2 0 8 8 
Region 3 0 0 0 
Region 4 0 0 0 
Total 0 8 9 
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expanding it with additional riders.  The Range Rider program is continuing in 2021, and the 
ranchers expressed optimism at the spring meeting based on their experiences in 2020.  Ted 
North of WS is interested in starting another Ranger Rider program in the Nirada and Hot 
Springs area west of Flathead Lake due to high livestock-carnivore conflicts in 2020, and is 
looking for funding and collaboration with the livestock producer in that area.  Adam Baca of 
WS continued preventative work by putting up fladry and electric fencing in 2020, completing 
calving enclosures at 6 locations (most returning from previous years).  He worked with 
Defenders of Wildlife and NRDC to construct an experimental fence in Marion that is a 6-7 
strand alternating-current permanent fence, because they have used fladry at that location for 
7 years and want a more permanent fence solution. 
 
In West-Central Montana, FWP was involved in two collaborative proactive risk management 
projects in the Blackfoot Valley: the Blackfoot Challenge range rider project and carcass pickup 
program. This was the 13th year that the range rider project was implemented. The project 
employed four seasonal range riders and one permanent wildlife technician to monitor 
livestock and predators in areas occupied by the Arrastra Creek, Chamberlain, Morrell 
Mountain, Inez, and Union Peak wolf packs. The carcass pickup program removed livestock 
carcasses from Blackfoot Valley ranches and transported them to the carcass compost site to 
reduce attractants in livestock grazing and calving areas. FWP and the Blackfoot Challenge 
partnered with Wildlife Services for the third year to deploy fladry in the Blackfoot Valley to 
deter wolves from livestock calving yards.  
 
FWP was also involved in two collaborative, proactive risk management projects in the Big Hole 
Valley. The first of these projects, a range rider completed its tenth season in 2020. The second 
project was a carcass pickup and composting program that was in its sixth year of operation.    
 
In North-Central Montana, a range rider program, initiated in 2017, on private land and USFS 
grazing allotments in the Augusta area included four livestock producers and employed one full-
time and an additional part-time range rider. The program was coordinated by Kyran Kunkel, 
through the Conservation Science Collaborative, with funding from the Livestock Loss Board, 
along with several NGOs. 
 
Wildlife Services continued a full-time conflict reduction specialist employee (Adam Baca) in 
Montana. This is a Wildlife Services position funded collaboratively by Wildlife Services, U.S. 
Fish and Wildlife Service, Natural Resources Defense Council, Defenders of Wildlife and the 
American Prairie Reserve.  Baca spent his time planning, coordinating, and implementing non-
lethal predator damage management tools such as turbo fladry and electric fencing to protect 
livestock from predation. This position began in February 2018. 
 
3.3 Total 2020 Documented Statewide Wolf Mortalities 
 
FWP detected a total of 368 wolf mortalities during 2020 statewide due to all causes (Fig. 13). 
Undoubtedly, additional mortalities occurred but were not detected. Documented total wolf 
mortality in 2020 was 12% greater than 8-year average since 2012 (8-yr avg. = 327). The 
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majority of the increase was due to higher levels of legal harvest with 305 occurring during 
calendar year 2020. Control actions were very similar to 2016-2019, and approximately one-
third of peak years. Of the 52 wolves removed in 2020 for livestock depredations, 47 were 
removed by WS and 5 were legally killed by private citizens under the Montana state laws 
known as the Defense of Property statute (2) or Senate Bill 200 (3). Two wolves were 
documented as being killed illegally, and 7 wolves were documented as being killed by vehicle 
or train collision. Three wolves were documented as being killed by natural, other, or unknown 
causes.  

 
Figure 13. Minimum number of wolf mortalities documented by cause for gray wolves (2005-

2020). Total number of documented wolf mortalities during 2020 was 368. 
 

4. OUTREACH AND EDUCATION 
 
FWP’s wolf program outreach and education efforts are varied, but significant. Outreach 
activities take a variety of forms including field site visits, phone and email conversations to 
share information and answer questions, presentations to school groups and other agency 
personnel, media interviews, and formal and informal presentations. FWP also prepared and 
distributed a variety of printed outreach materials and media releases to help Montanans 
become more familiar with the Montana wolf population and the state plan. The “Report a 
Wolf” application continued to generate valuable information from the public in monitoring 
efforts for existing packs and documenting wolf activity in new areas. Several reports were 
received through the website and others via postal mail and over the phone. Most wolf 
program staff spent some time at hunter check stations in FWP Regions 1-5 to talk with hunters 
about wolves, wolf management, and their hunting experiences.  
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5. FUNDING 
 
 
5.1 Montana Fish, Wildlife & Parks Funding 
 
Funding for wolf conservation and management in Montana is controlled by laws enacted by 
the state legislature. State laws also provide detailed guidance on some wolf management 
activities. The Montana Code Annotated (MCA) is the current law, and specific sections can be 
viewed at http://leg.mt.gov/bills/mca/index.html. Legislative bill language and history that has 
created or amended MCA sections can be accessed at http://leg.mt.gov/css/bills/Default.asp.  
Three sections of the MCA are of primary significance to wolf management and funding.  
These are: 
MCA 87-5-132  Use of Radio-tracking Collars for Monitoring Wolf Packs  
MCA 87-1-623  Wolf Management Account 
MCA 87-1-625  Funding for Wolf Management  
 
MCA 87-5-132 was created during the 2005 legislative session by Senate Bill 461. It has been 
amended twice, both times during the 2011 legislative session, by House Bill 363 and Senate Bill 
348. This law requires capturing and radio-collaring an individual within a wolf pack that is 
active in an area where livestock depredations are chronic or likely.   
 
MCA 87-1-623 was created during the 2011 Legislative Session by House Bill 363. This law 
requires that a wolf management account be set up and that all wolf license revenue be 
deposited into this account for wolf collaring and control. Specifically, it states that subject to 
appropriation by the legislature, money deposited in the account must be used exclusively for 
the management of wolves and must be equally divided and allocated for the following 
purposes: (a) wolf-collaring activities conducted pursuant to 87-5-132; and (b) lethal action 
conducted pursuant to 87-1-217 to take problem wolves that attack livestock. 
 
MCA 87-1-625 was created during the 2011 Legislative Session by Senate Bill 348. This law 
required FWP to allocate $900,000 annually toward wolf management. "Management" in MCA 
87-1-625 is defined as in MCA 87-5-102, which includes the entire range of activities that 
constitute a modern scientific resource program, including but not limited to research, census, 
law enforcement, habitat improvement, control, and education. The term also includes the 
periodic protection of species or populations as well as regulated taking. During the 2015 
legislative session, Senate Bill 418 reduced this amount to $500,000 of spending authority.  
 
The wolf management budget for state fiscal year 2020 (July 1, 2019 – June 30, 2020) was 
$753,488.50 and consisted of $236,050 of federal PR funds, $492,437.50 of Montana wolf and 
general license dollars, and $25,001 from the Rocky Mountain Elk Foundation.  
 
Funding was used to pay for FWP’s field presence to implement population monitoring, 
collaring, outreach, hunting, trapping, and livestock depredation response. During state fiscal 

http://leg.mt.gov/bills/mca/index.html
http://leg.mt.gov/css/bills/Default.asp
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year 2020, the wolf program had 5.5 FTE wolf specialists dedicated to wolf management, and 1 
total FTE for 2 seasonal technicians to increase collaring efforts in wolf packs associated with 
livestock. FWP also renewed the financial agreement with Wildlife Services for their role in wolf 
depredation management efforts. Other wolf management services provided by FWP include 
law enforcement, harvest/quota monitoring, legal support, public outreach, and overall 
program administration. Exact cost figures have not been quantified for the value of these 
services.  
 
 
5.2 USDA Wildlife Services Funding  
 
Wildlife Services (WS) is the federal agency that assists FWP with wolf damage management. 
WS personnel conduct investigations of injured or dead livestock to determine if it was a 
predation event and, if so, what predator species was responsible for the damage. Based on WS 
determination, livestock owners may be eligible to receive reimbursement through the 
Montana Livestock Loss Program. If WS determines that the livestock depredation was a 
confirmed wolf kill or was a probable wolf kill, the livestock owner is eligible for 100% 
reimbursement on the value of the livestock killed based on USDA market value at the time of 
the investigation. 
 
Under an MOU with FWP, the Blackfeet Nation (BN), and the Confederated Salish and Kootenai 
Tribes (CSKT), WS conducts the control actions on wolves as authorized by FWP, BN, and CSKT. 
Control actions may include radio-collaring and/or lethal removal of wolves implicated in 
livestock depredation events. FWP, BN, and CSKT also authorize WS to opportunistically radio-
collar wolf packs that do not have an operational radio-collar attached to a member of the pack 
in order to fulfill the requirements of Montana State Statute 87-1-623.   
 
As a federal agency, WS receives federal appropriated funds for predator damage management 
activities but no federal funding directed specifically for wolf damage management. Prior to 
Federal Fiscal Year (FFY) 2011, the WS Program in Montana received approximately $250,000 
through the Tri-State Predator Control Earmark, some of which was used for wolf damage 
management operations. However, that earmark was completely removed from the federal 
budget for FFY 2011 and not replaced in FFY 2012-2020. 
 
In FFY 2020, WS spent $340,600 conducting wolf damage management in Montana (not 
including administrative costs). The FFY 2020 expenditure included $230,600 Federal 
appropriations and $110,000 from FWP.    
 

6. PERSONNEL AND ACKNOWLEDGEMENTS 
 
The 2020 FWP wolf specialist team was comprised of Wendy Cole, Nathan Lance, Tyler Parks, 
Mike Ross, and Ty Smucker.  
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Wolf specialists work closely with regional wildlife managers in FWP regions 1-5, including Neil 
Anderson, Howard Burt, Cory Loeker, Kevin Rose, and Mike Thompson, as well as Carnivore and 
Furbearer Coordinator, Bob Inman.  Wolf technicians Megan Diamond and Brandon Davis 
provided seasonal assistance monitoring and trapping with the specialists in regions 1 and 2. 
FWP Helena and Wildlife Health Lab staff contributed time and expertise including Caryn 
Dearing, Missy Erving, Justin Gude, Anne Howes, Quentin Kujala, Greg Lemon, Ken McDonald, 
Adam Messer, Kevin Podruzny, Jennifer Ramsey, John Vore, Brian Wakeling, and Smith Wells. 
The wolf team is part of a much bigger team of agency professionals that make up Montana 
Fish, Wildlife & Parks including regional supervisors, biologists, game wardens, information 
officers, front desk staff, and many others who contribute their time and expertise to wolf 
management and administration of the program.   
 
FWP thanks The Blackfoot Challenge and their range riders: Eric Graham, Jordan Mannix, Vicki 
Pocha, and Sigrid Olson. The Blackfoot Challenge worked with ranchers and landowners to 
reduce wildlife conflict in the Blackfoot watershed using fladry and carcass pick-up, and they 
helped with wolf monitoring.  
 
USDA APHIS WS investigates all suspected wolf depredations on livestock and under the 
authority of FWP, carries out all livestock depredation-related wolf damage management 
activities in Montana. We thank them for contributing their expertise to the state’s wolf 
program and for their willingness to complete investigations and carry out lethal and non-lethal 
damage management and radio-collaring activities in a timely fashion. We also thank WS for 
assisting with monitoring wolves in Montana. WS personnel involved in wolf management in 
Montana during 2020 included assistant regional director John Steuber; western district 
supervisor Kraig Glazier; acting state director Dalin Tidwell; western assistant district supervisor 
Chad Hoover; eastern assistant district supervisor Alan Brown; wildlife disease biologist Jerry 
Wiscomb; wildlife biologist Zack May; helicopter pilot Eric Waldorf; helicopter/airplane pilots 
Tim Graff and John Martin; airplane pilots Guy Terrill, Justin Ferguson, and Scott Snider; wildlife 
specialists Adam Baca, Jesseanne Castle, Glenn Hall, Micheal “Finny” Helske, Mike Hoggan, 
Cody Knoop, , John Maetzold, Graeme McDougal, John Miedtke, Kurt Miedtke, Brian Noftsker, 
Ted North, Scott Olson, Cody Richardson, Jim Rost, Dymond Running Crane, Kirk “Skippy” 
Sims, Bart Smith, Brian, Smith, Pat Sinclair, and Danny Thomason.  
 
We acknowledge the work of the citizen-based Montana Livestock Loss Board which oversees 
implementation of Montana’s reimbursement program and the conflict prevention grant 
money, and we thank the LLB’s coordinator, George Edwards. 
 
We thank Northwest Connections for their avid interest and help in documenting wolf presence 
and outreach in the Swan River Valley. We thank Swan Ecosystem Center for their continued 
interest and support. We thank Kyran Kunkel of Conservation Science Collaborative, Inc. for his 
continued coordination of a range rider program on private and public land along the Southern 
Rocky Mountain Front. We also thank Kathy Robinson who was the range rider on this effort 
and was instrumental in working with local producers to monitor livestock and predator activity 
in the area.  
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We thank Confederated Salish and Kootenai Tribal biologists Stacey Courville and Shannon 
Clairmont, and Blackfeet Tribal biologist Dustin Weatherwax for capturing and monitoring 
wolves in and around their respective tribal reservations. 
 
The Montana Wolf Management program field operations also benefited in a multitude of ways 
from the continued cooperation and collaboration of other state and federal agencies and 
private interests such as the USDA Forest Service, Montana Department of Natural Resources 
and Conservation (“State Lands”), U.S. Bureau of Land Management, Weyerhauser Company, 
Stimpson Lumber Company, Southern Pines Plantation, Glacier National Park, Yellowstone 
National Park, Idaho Fish and Game, Wyoming Game and Fish, Nez Perce Tribe, Canadian 
Provincial wildlife professionals, Turner Endangered Species Fund, People and Carnivores, 
Wildlife Conservation Society, Keystone Conservation, Boulder Watershed Group, Big Hole 
Watershed Working Group, the Madison Valley Ranchlands Group, the upper Yellowstone 
Watershed Group, the Blackfoot Challenge, Tom Miner Basin Association, and the Granite 
County Headwaters Working Group. 
 
We deeply appreciate and thank our pilots whose unique and specialized skills, help us find 
wolves, get counts, and keep us safe in highly challenging, low altitude mountain flying 
situations. They include Joe Rahn (FWP Chief Pilot), Neil Cadwell (FWP Pilot), Ken Justus (FWP 
Pilot), Trever Throop (FWP Pilot), Mike Campbell (FWP Pilot), Rob Cherot (FWP Pilot), Jim Pierce 
(Red Eagle Aviation, Kalispell), Roger Stradley (Gallatin Flying Service, Belgrade), Steve Ard 
(Tracker Aviation Inc., Belgrade), Dave Horner (Red Eagle Aviation), Joe Rimensberger (Osprey 
Aviation, Hamilton), and Mark Duffy (Central Helicopters, Bozeman). We also thank Quicksilver 
Aviation for their safe and efficient helicopter capture efforts. 
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TO REPORT A DEAD WOLF OR POSSIBLE ILLEGAL ACTIVITY: 
 
Montana Fish, Wildlife & Parks 

• Dial 1-800-TIP-MONT (1-800-847-6668) or local game warden 
 

  
TO SUBMIT WOLF REPORTS ELECTRONICALLY AND TO LEARN MORE ABOUT THE 
MONTANA WOLF PROGRAM, SEE:   

• http://fwp.mt.gov/fishAndWildlife/management/wolf/  
 

 
APPENDIX 1 

 
MONTANA CONTACT INFORMATION 

 
Montana Fish, Wildlife & Parks  
 
Wendy Cole 
FWP Wolf Management Specialist, Kalispell 
406-751-4586 
wendy.cole@mt.gov 
 
Tyler Parks 
FWP Wolf Management Specialist, Missoula 
406-531-4454 
tylerparks@mt.gov 
 
Nathan Lance 
FWP Wolf Management Specialist, Butte 
406-425-3355 
nlance@mt.gov 
 
Mike Ross  
FWP Wolf Management Specialist, Bozeman 
406-581-3664 
mross@mt.gov 
 
Ty Smucker 
FWP Wolf Management Specialist, Great Falls 
406-750-4279 
tsmucker@mt.gov 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Bob Inman 
FWP Carnivore & Furbearer Coordinator 
406-444-0042 
bobinman@mt.gov 
 
Brian Wakeling 
FWP Wildlife Management Bureau Chief 
406-444-3940 
brian.wakeling@mt.gov 
 
USDA Wildlife Services  
(to request investigations of injured or dead 
livestock):         
     
John Steuber 
USDA WS State Director, Billings 
(406) 657-6464 (w) 
 
Kraig Glazier 
USDA WS West District Supervisor, Helena 
(406) 458-0106 (w) 
 
Dalen Tidwell 
USDA WS East District Supervisor, Columbus 
(406) 657-6464 (w) 
 

http://fwp.mt.gov/fishAndWildlife/management/wolf/
mailto:tylerparks@mt.gov
mailto:nlance@mt.gov
mailto:mross@mt.gov
mailto:tsmucker@mt.gov
mailto:bobinman@mt.gov
mailto:jvore@mt.gov
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MONTANA FISH WILDLIFE & PARKS  
ADMINISTRATIVE REGIONS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STATE  REGION 3 REGION 4 REGION 6 
HEADQUARTERS 1400 South 19th 4600 Giant Springs Rd 54078 US Hwy 2 W 
MT Fish, Wildlife & Parks Bozeman, MT 59718 Great Falls, MT 59405 Glasgow, MT 59230 
1420 E 6th Avenue (406) 994-4042 (406) 454-5840 (406) 228-3700 
PO Box 200701    
Helena, MT 59620-0701 HELENA Area Res Office LEWISTOWN Area Res HAVRE Area Res Office 
(406) 444-2535  (HARO)  Office (LARO)  (HvARO) 
 930 Custer Ave W 215 W Aztec Dr 2165 Hwy 2 East 
REGION 1 Helena, MT 59620 PO Box 938 Havre, MT 59501 
490 N Meridian Rd (406) 495-3260 Lewistown, MT 59457 (406) 265-6177 
Kalispell, MT 59901  (406) 538-4658  
(406) 752-5501 BUTTE Area Res Office  REGION 7 
  (BARO) REGION 5 Industrial Site West 
REGION 2 1820 Meadowlark Ln 2300 Lake Elmo Dr PO Box 1630 
3201 Spurgin Rd Butte, MT 59701 Billings, MT 59105 Miles City, MT 59301 
Missoula, MT 59804 (406) 494-1953 (406) 247-2940 (406)234-0900 
(406) 542-5500    

  



31 

 
APPENDIX 2 

 
RESEARCH, FIELD STUDIES, AND PROJECT PUBLICATIONS 

 
Each year in Montana, there are a variety of wolf-related research projects and field studies in 
varying degrees of development, implementation, or completion. These efforts range from wolf 
ecology and predator-prey relationships to wolf-livestock relationships, policy, or wolf 
management. In addition, the findings of some completed projects get published in the peer-
reviewed literature. The 2019 efforts are summarized below, with updates or project abstracts. 
 
 
A2.1. IMPROVING ESTIMATION OF WOLF RECRUITMENT AND ABUNDANCE, AND 
DEVELOPMENT OF AN ADAPTIVE HARVEST PROGRAM FOR WOLVES IN MONTANA.  
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EXECUTIVE SUMMARY 

This research was undertaken from 2014 – 2020 to provide biological insights and tools to enhance 
conservation and management of wolves in Montana. Gray wolves were extirpated from Montana in the 
20th century. Formal protections under the Endangered Species Act, natural recolonization, and 
reintroduction efforts led to the recovery of the wolf population in the Northern Rocky Mountains. 
Recovery enabled delisting the population in Montana in 2009 and 2011 (with brief renewed protections 
during court challenges in these years). This returned management authority to the state, allowing 
Montana Fish, Wildlife and Parks (MFWP) to manage the population through public harvest seasons.  

A major objective of our research was to provide a means to reliably estimate wolf abundance. 
Abundance estimates are key to management decisions, and to date have relied on challenging, costly 
field-based monitoring. From 2007 through 2019, MFWP estimated annual population size using a patch 
occupancy model-based approach. However, this approach was sensitive to sizes of packs and territories, 
and was developed prior to the implementation of public harvest. Reliability of estimates were contingent 
on accurate information on territory size, overlap, and pack size. Intensive, field-based monitoring 
became cumbersome and less effective as the population grew. Furthermore, the cessation of federal 
funding for wolf monitoring required a reduction in reliance on intensive counts of the wolf population. 

We developed a multi-model approach known as the integrated patch occupancy model (iPOM) to 
estimate wolf abundance. iPOM eliminates the need for intensive field-based monitoring and introduces 
biological models of wolf behavior. An occupancy model first estimates annual wolf distribution, based 
on environmental covariates and wolf observations reported by hunters. A mechanistic territory model 
predicts territory sizes using simple behavioral rules and limited data for prey resources, terrain 
ruggedness, and human density. Together, these models predict the number of packs in a given area. 
Finally, a pack size model demonstrates that pack sizes are generally negatively related to terrain 
ruggedness, local mortalities, and intensity of harvest management. Total abundance estimates are derived 
by combining the predicted number of packs and pack sizes.  

We applied iPOM to estimate wolf abundance for 2007 – 2019. The population was estimated to have 
been smallest in 2007, with 91 packs (95% CI = 76 – 107) and 650 wolves (95% CI = 547 – 771). A 
peak appears in 2011, with a high of 187 packs (95% CI = 170 – 206) and 1254 wolves (95% CI = 1136 – 
1383). This coincided with the first years of harvest management, after which the population declined by 
7.8% in total abundance between 2011 and 2019. From 2016 – 2019, the population appears to have 
become somewhat stabilized with an average of 190 packs and 1136 wolves per year, even with an 
estimated annual harvest rate of >20% in this period. 

We also sought to develop methods to estimate recruitment in wolf packs in Montana. We developed and 
tested an integrated population model to estimate the number of pups recruited without recruitment data. 
Recruitment of wolves in Montana varied annually, and was negatively correlated with wolf abundance 
and harvest, and positively correlated with pack size. Future application of the recruitment model will 
require incorporation of iPOM methodology; however, our model provides the foundation for estimating 
recruitment using collaring and pack count data. 



Additionally, we conceptualized a decision tool for wolf management. Management of large carnivore 
populations with harvest is contentious. Adaptive management incorporates scientific information and 
associated uncertainty in a transparent process that relates alternative management actions to explicit, 
quantifiable objectives to guide decision making. Through monitoring, uncertainty can be reduced over 
time to improve future decisions. We demonstrate how an adaptive management framework explicitly 
incorporating uncertainty in estimates of harvest, biological and sociopolitical values, and quantitative 
objectives could guide decisions of harvest regulations of wolves. 

Based on these new analytical methods, we provided recommendations for wolf monitoring to inform 
iPOM and recruitment estimates. Efficient and effective use of limited resources requires targeted 
monitoring. Because wolves in Montana are managed through harvest, reliable estimates of population 
size will help inform harvest regulations. Abundance estimation will entail the continuation of hunter 
harvest surveys and monitoring related to the occupancy model. This includes pack centroids, although 
potential exists for a reduction from current effort. Approximate locations of wolves removed in response 
to livestock conflicts will be needed for the pack size model. Future monitoring of pack size may be 
needed to calibrate the model, such as if changes are made to harvest regulations. Once finalized to 
include the iPOM methodology, the recruitment model will require collar and pack count data. 

 

 



INTRODUCTION 

Gray wolves (Canis lupus) were extirpated from most of the contiguous United States, including 
Montana, in the 20th century. With formal protections under the Endangered Species Act in 1974 (U.S. 
Fish and Wildlife Service 1974), wolves began recolonizing northwest Montana in the 1980s (Ream et al. 
1989) and nearby areas following reintroductions into Yellowstone National Park and Idaho in 1995 and 
1996 (Bangs and Fritts 1996). Wolf numbers increased thereafter, and wolves were delisted via 
congressional action in Montana in 2009 and 2011 (with a brief re-listing in 2010 due to court challenges; 
Fritts et al. 1997, Bradley et al. 2014). Delisting returned management authority to the state, and wolves 
were officially classified as a “species in need of management,” enabling harvest seasons as identified in 
Montana’s wolf management plan to be carried out in 2009 and from 2011 onward. 

In response to federal delisting criteria, Montana has committed to maintain populations and breeding 
pairs (a male and female wolf with ≥2 surviving pups by December 31; USFWS 1994) above established 
minimums of ≥150 wolves and ≥15 breeding pairs. Montana Fish, Wildlife and Parks (MFWP) has 
estimated population size each year since 2007 using a patch occupancy model-based approach (POM; 
Miller et al. 2013; Rich et al. 2013; Bradley et al. 2015). However, this approach is sensitive to pack size 
and territory size and was developed prior to the implementation of public harvest seasons for wolves. 
Reliability of future estimates will be contingent on accurate information on territory size, overlap, and 
pack size, which are likely influenced by harvest. Additionally, breeding pairs are determined via direct 
counts. Federal funding for wolf monitoring has ended in Montana, and future monitoring will not be able 
to rely on intensive counts of the wolf population. Intensive, field-based monitoring has become 
cumbersome and less effective since the population has grown. With the implementation of public harvest 
seasons, predicting the effects of harvest on the wolf population and monitoring the effectiveness of 
management actions will help inform decisions regarding hunting and trapping seasons.  

Objectives & Deliverables  

Two PhD students addressed the 4 study objectives, as follows (Fig. 1): 

1. Wolf abundance: Improve and maintain calibration of wolf abundance estimates generated through 
POM. 

Deliverables: Models to estimate territory size and pack size that can keep POM estimates calibrated 
to changing environmental and management conditions for wolves in Montana (Project 1, S. Sells). 

2. Recruitment: Improve estimation of 
recruitment. 

Deliverables: A method to estimate 
recruitment for Montana’s wolf population 
that is more cost effective and biologically 
sound than the breeding pair metric (Project 
2, A. Keever).  

Figure 1. Objectives were addressed by 2 PhD projects.  



3. Adaptive management: Develop a framework for dynamic, adaptive harvest management based on 
achievement of Objectives 1 & 2. 

Deliverables: An adaptive harvest management model that allows the formal assessment of various 
harvest regimes and reduces uncertainty over time to facilitate adaptive management of wolves 
(Project 2, A. Keever). 

4. Monitoring program: Design a targeted monitoring program to provide information needed for 
robust estimates and reduce uncertainty over time. 

Deliverables: A recommended monitoring program for wolves to maintain calibration of POM 
estimates, determine effectiveness of management actions, and facilitate learning in an adaptive 
framework (S. Sells and A. Keever). 

Project Outcomes 

Project 1, S. Sells: The PhD components of this project were completed and defended in December 2019. 
Project deliverables included a mechanistic territory model, empirical territory and group size models, 
and a final dissertation (Sells 2019). As a Research Associate through December 2020, S. Sells continued 
collaboration towards integrating models to estimate wolf abundance for the MFWP Wolf Program.  

Project 2, A. Keever: This project was completed in September 2020. Project deliverables included 
recruitment models, conceptualization for a decision tool in an AHM framework, and a final dissertation 
(Keever 2020). 

Details are provided in subsequent sections of this report.  
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SECTION 1: ESTIMATION OF WOLF ABUNDANCE  

ABSTRACT  Our goal under Objective 1 was to develop reliable methods to estimate territory size, 
territory overlap, and pack size to help improve the reliability of wolf abundance estimates through POM. 
We developed and applied a mechanistic territory model to produce predictions for the hypothesis that 
wolves select territories economically based on the benefits of food resources and costs of competition, 
travel, and predation risk. We summarized territory sizes of real wolves using location data and empirical 
models to test the mechanistic model’s predictions. As predicted, territory sizes in Montana varied 
inversely with prey abundance, number of nearby competitors, and pack size, and curvilinearly with 
mortality risk. Parameterizing the mechanistic model with data produced spatially-explicit predictions for 
territory location, size, and overlap for the Montana wolf population and reliably predicted territories of 
specific packs. Additionally, we aimed to test mechanisms hypothesized to influence pack size and to 
develop a predictive model for pack size. Pack size increased with density of packs and decreased with 
greater terrain ruggedness, control removals, and intensity of harvest management. A predictive model for 
pack sizes reliably estimated the annual wolf pack sizes observed and illuminated possible underlying 
mechanisms influencing variation in pack sizes over space and time. Finally, we incorporated these 
territory and pack size models into an integrated Patch Occupancy Model to estimate wolf abundance in 
Montana. We applied the models to estimate wolf abundance for 2007 – 2019. The population was 
estimated to have been smallest in 2007, with 91 packs (95% CI = 76 – 107) and 650 wolves (95% CI = 
547 – 771). A peak appears in 2011, with a high of 187 packs (95% CI = 170 – 206) and 1254 wolves 
(95% CI = 1136 – 1383). This coincided with the first years of harvest management, after which the 
population declined by 7.8% in total abundance between 2011 and 2019. From 2016 – 2019, the 
population appears to have become somewhat stabilized with an average of 190 packs and 1136 wolves 
per year, even with an estimated annual harvest rate of >20% in this period. 

1.1 Introduction 

Monitoring is a critical yet challenging component of gray wolf management. Throughout wolf recovery 
in the Northern Rockies, intensive monitoring helped managers estimate numbers of packs, territory 
locations, and pack sizes. Monitoring results helped MFWP set public harvest seasons, inform livestock 
depredation policies, evaluate the effects of public harvest and depredation management, and 
communicate with stakeholders and the public. Monitoring large carnivores is challenging, however, due 
to their elusive nature and low densities (Boitani et al. 2012). Minimum counts of packs and wolves was 
achievable during initial stages of wolf recovery when fewer wolves existed on the landscape. This task 
became exceedingly difficult once wolves became spread across western Montana and federal funding for 
monitoring ended. Monitoring has also relied on deploying radio- and global positioning system (GPS)-
collars, which is increasingly challenging due to difficulty of capture and frequent collar loss caused by 
collar failures and mortalities. Furthermore, there is frequent turnover of packs, and public harvest can 
affect behavioral dynamics of wolves (Adams et al. 2008, Brainerd et al. 2008).   

Abundance estimates are a key component of monitoring and to date have relied on this challenging, 
costly field effort. A Patch Occupancy Model (POM) developed a decade ago (Miller et al. 2013, Rich et 
al. 2013) helped improve the ability to estimate annual wolf and pack abundances (Fig. 1.1). From 2007 – 
2019, POM estimated abundance using parameters for area occupied, average territory size, annual 
territory overlap index, and annual average pack size (Inman et al. 2020). Area occupied was estimated 



with an occupancy model, 
using hunter observations 
and field surveys on an 
observation grid of 600 
km2 cells (Miller et al. 
2013, Rich et al. 2013, 
Inman et al. 2020). 
Average territory size was 
assumed to be 600 km2 
based on past work (Rich et 
al. 2012). An ad hoc 
overlap index was the average number of known packs per 600 km2 grid cell. Annual average pack size 
was estimated from field monitoring using visual surveys, trail cameras, and public reports. Pack 
abundance was then calculated as the number of territories estimated within the area occupied (i.e., area 
occupied ÷ 600 km2 × overlap index). Abundance of wolves living in packs was estimated as the number 
of packs × average pack size, and total wolf abundance was the abundance of wolves in packs × 1.125 to 
account for lone and dispersing wolves, based on scientific literature (Fuller et al. 2003). 

Whereas estimates of area occupied through POM are expected to be reliable (Miller et al. 2013), 
reliability of abundance estimates hinges on assumptions about territory size, territory overlap, and pack 
size (Inman et al. 2020). Assumptions of a fixed territory size with minimal overlap are simplistic; in 
reality, territories vary spatiotemporally (Uboni et al. 2015, Sells and Mitchell 2020). Furthermore, 
estimates of mean territory size were largely derived pre-harvest and at a smaller population size (Rich et 
al. 2012). Overall abundance estimates would be biased with any temporal changes to mean territory size, 
as would regional estimates if mean territory size varies spatially. Variations in territory overlap would 
similarly bias results. Importantly, POM’s requirements of developing annual indices for overlap and 
mean pack size necessitate intensive monitoring to locate packs and accurately count pack members each 
year. This became increasingly infeasible given large numbers of packs, limited staff, and declining 
funding for monitoring (Inman et al. 2020).  

Our objective was to improve POM using a multi-model approach to predict territory size, territory 
overlap, and pack size in a manner that reduced reliance on field monitoring. A more efficient approach 
would allow limited conservation dollars to be used for other pressing needs. We developed an integrated 
Patch Occupancy Model (iPOM) that employs mechanistic and empirical models to maximize 
understanding of behavior and use available data. We used a mechanistic approach to test hypotheses 
about why wolves select particular territories and enable predicting behavior across a full range of 
potential present and future conditions. We evaluated the mechanistic model’s predictive ability using 
patterns summarized by empirical territory models. We used empirical models for group size to test 
hypotheses about factors influencing pack sizes and to develop a predictive model for pack size. This 
multi-model approach enables annual estimates of wolf population size and characteristics based on 
changing conditions and enhances understanding of wolf behavior, while drastically reducing costly, 
intensive monitoring efforts. 

Below, we provide overviews of the models developed for iPOM. Section 1.2 provides an overview of the 
mechanistic model for territory selection (Sells and Mitchell 2020). Section 1.3 introduces how we tested 

 
Figure 1.1. Example of POM results (red indicates highest occupancy probability, green 
lowest), and components of estimated wolf abundance.  
 



the model’s qualitative predictions using empirical models (Sells et al. in press). Section 1.4 introduces 
how we parameterized the mechanistic model with data for Montana to evaluate the model’s capacity to 
make quantitative, spatially-explicit predictions and to further understand how and why wolf territories 
vary over space and time (Sells et al. in review a). Section 1.5 provides an overview of pack size analyses, 
and Section 1.6 provides an overview of the resulting predictive model for pack size (Sells et al. in review 
b). Finally, Section 1.7 details the integration of the models into iPOM to estimate wolf abundances (Sells 
et al. in prep). The dissertation produced from this research contains the full details about the territory and 
pack size models (Sells 2019), as do upcoming manuscripts and those in review. 

1.2 Mechanistic Territory Model 

Understanding how and why territory sizes vary would help calibrate iPOM. As detailed in Sells and 
Mitchell (2020), we developed a mechanistic model to enhance understanding of mechanisms driving 
territory selection. The Sells and Mitchell (2020) model was designed to apply broadly across taxa and 
used no input data. The model produced qualitative predictions for patterns of territory size and overlap in 
relation to environmental and social conditions simulated animals encountered. 

The model centered on the hypothesis that in general, territories that maximize benefits and minimize 
costs of ownership should lead to higher fitness (Brown 1964, Emlen and Oring 1977, Krebs and 
Kacelnik 1991). Accordingly, as a product of natural selection (Darwin 1859), animals are likely adapted 
to select territories economically. Based on theory and empirical precedent, territoriality should occur 
only when resources are economically defendable (Brown 1964), i.e., benefits outweigh costs of defense. 
Economical territories should also be only large enough to provide requisite resources for survival and 
reproduction, except in cases where additional resources increase fitness (Mitchell and Powell 2004, 
2007, 2012). A primary benefit of many territories is likely exclusive access to food resources (Brown 
1964, Hixon 1980, Carpenter 1987, Adams 2001) because food is essential to survival and reproduction. 
Primary costs are likely competition (Brown 1964, Hixon 1980, Carpenter 1987) and travel (Mitchell & 
Powell 2004, 2007, 2012), because competition is inherent to territoriality and energy is needed to access 
and defend resources. Territory holders with lower competitive ability may also pay higher costs to 
compete against more-competitive conspecifics (Packer et al. 1990, Sillero-Zubiri and Macdonald 1998, 
Cassidy et al. 2015, Sells and Mitchell 2020). Mortality risk may also be a primary cost where predator 
density is high if it affects how animals select and use their territory (Sargeant et al. 1987, Whittington et 
al. 2005, Rich et al. 2012).  

The mechanistic model was founded on optimal foraging theory and thus an evolutionary approach to 
understanding the proximate and ultimate mechanisms underlying behavior (Börger et al. 2008). 
Integration of competitor-interaction modeling (Adams 2001) helped understand how competition affects 
economical territory selection. The approach strongly differed from previous mechanistic territory models 
that have typically used partial differential equations to model movement as diffusive with a bias towards 
the territory center (Börger et al. 2008). That class of mechanistic models focus on movement ecology 
and third-order selection (space use within the territory; Johnson 1980), whereas Sells and Mitchell 
(2020) modeled first- and second-order selection through economical behavior. This work thus built on 
the foundation of a mechanistic model of economical home range selection (Mitchell and Powell 2004), 
which successfully predicted home ranges of black bears (Ursus americanus; Mitchell and Powell 2007, 
2012). That earlier work modeled space use with respect to the benefits of food resources and costs of 



travel, and was limited to home ranges because it represented competition passively as resource 
depression. Accordingly, Sells and Mitchell (2020) modeled competition dynamically, whereby territory 
holders continuously assessed and responded to the decisions made by neighboring conspecifics. 

Methods 

The Sells and Mitchell (2020) mechanistic model represented the hypothesis that animals from numerous 
taxa are adapted to select territories economically based on the benefits of food resources and costs of 
competition, travel, and mortality risk. The mechanistic territory model was developed in NetLogo 6.1.1 
(Wilensky 1999) and entailed spatially-explicit simulations. Landscapes for simulations were grids of 
patches that varied in benefits and costs of ownership.  

In the model, territories were selected for simulated animals (agents) to economically meet their resource 
requirements by maximizing food resources obtained while minimizing costs of territory ownership (Fig. 
1.2). Each time an agent was added to the simulated landscape, it selected a starting location for a 
territory center and then calculated patch values around itself by discounting each nearby patch’s food 
benefits by its associated costs of ownership. It then selected patches for a territory in order of patch 
value, stopping once sufficient resources were obtained. The agent’s selected territory center was next 
compared to the territory’s geographic center. A mismatch between centers indicated patch values were 
more economical in a particular direction. Accordingly, the agent was repositioned to the geographic 
center if it did not align with the selected center. The agent then recalculated patch values, reselected 
patches, and continued this process of territory building and centering until the selected and geographic 
centers matched, indicating the territory was optimized. After each agent selected its territory, 
neighboring agents assessed whether their territories were still economical, as any changes in overlap 
with neighboring territories influenced costs of competition for those patches. Each agent dropped less-
valuable patches from its territory and added more-valuable patches to maximize the territory’s economic 
value. This cycle of territory formation and maintenance continued after each new agent was added to the 
landscape. Once a predefined population target was reached, the simulated ended. 

We conducted simulation 
experiments to provide 
data for summarizing 
effects of food, resource 
requirements, competition, 
competitive ability, and 
mortality risk (represented 
as predator density) on 
territorial space use. We 
collected output summaries 
for each territory formed 
after initial establishment, 
at a low population density 
and after carrying capacity 
was reached (i.e., the 
landscape could not 

 

Figure 1.2. Mechanistic territory model schematic.  



support more territories). We recorded each agent’s final territory size (including travel corridors to reach 
selected patches from the territory center), territory overlap, number of nearby competitors, and predator 
density encountered (mean predator presence per territory patch). We used program R Version 3.6.1 (R 
Core Team 2020) and package dplyr (Wickham et al., 2019) to summarize results.  

Results & Discussion 

The mechanistic, spatially-explicit, individual-based model produced numerous empirically testable 
predictions for what may be observed empirically if economical territory selection drives placement and 
characteristics of territories (Table 1.1). For example, the model predicted that greater food abundance 
and competitor density would lead to smaller territories, less competitive territory holders encountering 
high population densities would often have larger territories than more-competitive conspecifics, and 
territory size would often increase before decreasing curvilinearly in response to greater levels of 
mortality risk. A curvilinear response to costs of mortality risk suggests there are increasingly-economical 
trade-offs with other benefits and costs, e.g., through abandoning areas of high mortality risk and 
accepting higher costs of competition by overlapping other territories. A subsequent literature search 
demonstrated numerous observations of these patterns in real populations across taxa, contributing 
evidence for the economical selection of territories as a causal mechanism underlying ecological patterns 
observed (Sells and Mitchell 2020).  

The model can be used to predict the effects of conservation actions. In absence of data, the model 
provided predictions and a mechanistic understanding of how territorial behavior is likely to vary over 
space and time. For example, a mechanistic understanding of how a population will respond to prey and 
predator distributions and abundances can help predict the effects of a species on prey populations, and 
vice versa. The model can furthermore be parameterized with empirical data to make spatially-explicit 
predictions, e.g., for locations and sizes of territories across areas of conservation concern (Sect. 1.4).  

Table 1.1. Model predictions for mean territory size, overlap, and carrying capacity.  

Scenario Territory size Territory overlap Carrying capacity 

As food distribution > clumped  − + + 

As food abundance ↑ − − or + a + 

As resource requirements ↑ + − − 

As population density ↑,  in population mean − or + a + NA 

As # neighbors ↑  primarily − a + NA 

As competitor density ↑,  in individual territory primarily − a + NA 

Less competitive individuals or groups + a − or + a NA 

As mortality risk (density of predators) ↑ − or + b variable b − 

a Trends were variable; details in Sells and Mitchell (2020). 
b Generally varied curvilinearly by predator density (territory size) or in nuanced ways (overlap). 

 

 



1.3 Empirical Territory Models 

Alignment of the mechanistic model’s predictions (Sect. 1.2) with empirically-observable patterns in 
territories of wolves would contribute evidence that economical territory selection is a causal mechanism 
underlying space use by wolves (Sells and Mitchell 2020). We therefore sought to determine whether the 
model suitably predicted and explained patterns in space use of wolves. To accomplish this, we compared 
patterns predicted by the mechanistic model to patterns observed in territories of wolves in Montana. We 
used GPS location data collected from 2014 – 2019 as part of this research to estimate the locations of 
wolf territories.  

The mechanistic model’s hypotheses are easily extended to wolves (Table 1.2). This strongly territorial 
species maintains territories year-round (Mech and Boitani 2003). Ungulates comprise the bulk of wolf 
diets (Mech and Peterson 2003, Peterson and Ciucci 2003). Packs generally comprise a dominant 
breeding pair and their offspring from multiple years who cooperatively defend the territory, hunt, and 
raise pups. Larger groups of carnivores may have greater competitive ability (Packer et al. 1990, Sillero-
Zubiri and Macdonald 1998, Cassidy et al. 2015) and therefore reduced costs of competition with 
neighboring groups. Wolves are coursing predators who travel long distances, and such movement is 
energetically costly. Following the concept of economical territories (Sells and Mitchell 2020), areas 
costlier to own would necessitate more benefits to offset the cost. For wolves, rugged terrain may increase 
travel costs whereas roads with low human use may offer less-costly travel routes (Whittington et al. 
2005, Zimmermann et al. 2014). It is also possible that high travel costs ultimately become uneconomical 

Table 1.2 The mechanistic model’s hypotheses and predictions for economical territory selection as applied to wolves, and evidence of 
these patterns in wolf territories in Montana.  

Hypothesis: Wolves select territories 
economically based on benefits and costs: 

Prediction for territory sizea Variable Evidence consistent 
with hypothesis? 

Food resources are a  
primary benefit structuring space use 

↓ where prey abundance ↑ ungulatesummer yes 

ungulatewinter yes 

Competition is a primary cost structuring 
space use; additionally, smaller groups pay 
higher costs to compete 

↓ as # nearby competitors ↑ competitordensity yes 

↓ as group size ↑ at high 
population densities 

groupsize yes 

Travel is a primary cost structuring space 
use; in our system, rugged terrain is more 
costly and low-use roads are less costly  

↑ where ruggedness ↑ to 
offset this cost  

ruggedness yes 

alternatively, n-curvilinear 
response to ruggedness 

ruggedness^2 yes 

↓ where road density ↑ given 
lower costs 

roadslow-use yes 

Mortality risk is a primary cost structuring 
space use  

n-curvilinear response  roadslow-use^2 no 

densityhumans^2 no 

harvestmortalities^2 yes 

Yes = results consistent with hypothesis (90% confidence intervals [CI’s] exclude 0); no = no support (CI overlaps 0). 
a. Predictions were from the Sells and Mitchell (2020) mechanistic model (Sect. 1.2). We focused on patterns in territory size rather 
than overlap because the full territory mosaic and resulting overlap cannot be known (absent simultaneously deploying collars on 
wolves in every territory, which is infeasible given cost, logistics, difficulty of capture, and frequent collar turnover). 

 

 



such that territory size declines curvilinearly, as with the response to costs of mortality risk (Sells and 
Mitchell 2020). Humans are generally a primary source of mortality (Fritts et al. 2003, Musiani and 
Paquet 2004) and harvest has occurred in our study system for the past decade (Inman et al. 2020). 
Wolves are intelligent and adaptable (Packard 2003) and often avoid humans (Whittington et al. 2004, 
Hebblewhite and Merrill 2008, Latham et al. 2011). Whether permanent or limited to specific times of 
day or seasons, avoidance of sites associated with higher mortality risk could necessitate expansion of the 
territory to maintain its economic value, until trade-offs in other costs and benefits become more 
economical (Sells and Mitchell 2020). We hypothesized that costs of mortality risk increased with density 
of low-use roads (which may provide easier travel for not only wolves, but hunters, trappers, and other 
recreationists), density of humans, and greater numbers of conspecifics recently killed via harvest. 

Methods 

Study Area 

Our study area was Montana (Fig. 1.3), where elevations range 554 – 3,938 m (Foresman 2001). In the 
northwest corner of Montana, dense forests and a maritime-influenced climate characterized the rugged, 
mountainous terrain of the Northern Rockies Ecoregion (NRE, epa.gov). To the east, the Canadian 
Rockies Ecoregion (CRE) was characterized by higher-elevation, glaciated terrain, which transitioned to 
the Northwestern Glaciated Plains Ecoregion (GLPE) characterized by level and rolling terrain with 
seasonal ponds and wetlands. In far southwestern Montana, the Idaho Batholith Ecoregion (IBE) was 
mountainous, granitic, and partially glaciated. To the east, the large Middle Rockies Ecoregion (MRE) 
was characterized by rolling foothills where shrubs and grasses transitioned to rugged mountains with 
conifers and alpine vegetation. The xeric Wyoming Basin Ecoregion (WBE) of south-central Montana 

 
Figure 1.3. Our study area encompassed the state, characterized by various ecoregions (epa.gov). Also shown are the wolf 
territories estimated as part of this research, and the MFWP regional boundaries (R1 – R7, gray lines). 
 



was dominated by grasses and shrubs. The semiarid, rolling plains of Northwestern Great Plains 
Ecoregion (GRPE) in southeastern Montana was interspersed with breaks and forested highlands. Wolves 
were found primarily in the western side of the state within the NRE, CRE, IBE, and MRE, but reported 
sightings and occasional harvests occurred in eastern Montana. Primary prey for wolves were elk (Cervus 
canadensis), white-tailed deer (Odocoileus virginianus), mule deer (O. hemionus), and moose (Alces 
alces). Other large carnivores included coyotes (C. latrans), mountain lions (Puma concolor), black bears 
(Ursus americanus), and grizzly bears (U. arctos). The human population in Montana was just over 
1,062,000 in 2018 (census.gov). Annual depredation removals for livestock conflicts ranged 51 – 61 from 
2014 – 2017 (Coltrane et al. 2015; Bradley et al. 2015; Boyd et al. 2017; Montana Fish Wildlife and 
Parks 2018). During this same era, harvest through hunting and trapping led to 207 – 295 mortalities per 
harvest season, which occurred each September 1 – March 15.  

Wolf location data 

Location data were collected from 2014 – 2019 via GPS collars deployed by MFWP. Wolf captures 
occurred using foothold traps (EZ Grip # 7 double long spring traps, Livestock Protection Company, 
Alpine TX), or aerial darting. Wolf anesthetization and handling followed MFWP’s biomedical protocol 
for free-ranging wolves (Montana Fish, Wildlife and Parks 2005), guidelines from the Institutional 
Animal Care and Use Committee for the University of Montana (AUP # 070–17), and guidelines from the 
American Society of Mammalogists (Sikes et al. 2011). GPS collars were Lotek LifeCycle, Lotek 
Litetrack B 420, Telonics TGW-4400-3, Telonics TGW-4483-3, or Telonics TGW-4577-4, programmed 
to collect latitude and longitude every 3 – 13 hours.  

MFWP Wolf Specialists determined pack membership of each collared individual. A wolf was considered 
a resident of its pack while its movements were in a localized cluster, including limited forays, defined as 
departing from and returning to the cluster. We considered a wolf to no longer be a resident if it did not 
return to its territory, or forays became frequent (this nearly always precipitated full dispersal; frequent 
forays were defined as starting a new foray < 1 month after returning from a previous one). Upon 
dispersing, the individual could either die or join a new pack by again localizing its movements. 
Successful dispersers were identified as a member of the nearest pack or given a new pack identification 
if the cluster did not overlap a known territory centroid.  

We estimated sizes and locations of territories of resident, GPS-collared wolves using Program R (R Core 
Team 2020). We estimated territory sizes using volume-adaptive kernel density estimates (KDEs; Worton 
1989) with package AdehabitatHR (Calenge 2006), with a smoothing parameter of 100% of the reference 
bandwidth. This smoothing parameter and a 95% KDE best prevented islands and lacunas while 
excluding extra-territorial forays. We also generated 90% KDEs to enable comparisons to past research in 
Montana (Rich et al. 2012). We generated KDEs for each year of data for each territory in which the wolf 
was a resident. We excluded 2 individuals whose territories were mostly or entirely outside of Montana 
(beyond which covariate data were not readily available), 3 individuals that appeared transient, and 2 
individuals whose collars functioned intermittently (transmitting < 1 fix every 5 days on average). We 
averaged territory size for packs with multiple KDEs, which occurred if > 1 wolf was collared in a pack 
or a wolf was collared for multiple years. We considered wolves to represent the same pack when their 
50% KDEs (i.e., core areas) had any overlap. 



Explanatory variables 

We generated explanatory variables to represent the benefit of prey resources and costs of competition, 
travel, and mortality risk using Program R (R Core Team 2020). We represented prey resources as 
summer and winter ungulate density indices, competition as competitor density and pack size, travel as 
terrain ruggedness and low-use road densities, and mortality risk as low-use road densities, human 
densities, and harvest mortalities (Table 1.2). For competitor density, pack size, and harvest mortality, we 
averaged data from the calendar year in which the collar was deployed (year T) and the following year 
(T+1). Because collars were deployed at variable times of year, this 2-year mean better matched the 
timing of collar deployment. We used the most recent year of data available for these variables in limited 
cases where data were unavailable in 2018 or 2019.  

We developed indices for ungulate densities across our large study area. In each km2 grid cell i delineated 
as summer deer habitat (http://fieldguide.mt.gov), we calculated a summer deer density index as: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑖𝑖 = (𝑁𝑁𝑅𝑅 ÷ 𝛴𝛴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) × (𝐶𝐶𝐶𝐶𝑈𝑈𝐸𝐸𝑖𝑖 ÷ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅�). 
𝑁𝑁𝑅𝑅 was MFWP’s 10-year average estimate of white-tailed and mule deer abundance in the MFWP 
administrative region (𝑅𝑅) where i fell. 𝛴𝛴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 was 𝑅𝑅’s estimated area of deer summer habitat. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 was 
the mean catch per unit effort (CPUE; male harvest / hunter days) in the MFWP hunting district in which 
i fell, and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅�  was the regional mean CPUE, based on MFWP harvest records from 2008 – 2017. We 
repeated these calculations for a deer winter density index, and for elk density indices. The long-term 
regional averages were the most reliable ungulate abundance data for our study area and provided a 
preliminary density estimate (the first half of the formula). The second half of the formula adjusted this 
index slightly lower or higher based on the relative CPUE, which generally correlates with deer and elk 
abundance (Dusek et al. 2006, Rich et al. 2012) and is best compared within administrative regions given 
spatially similar factors that can affect hunting success (e.g., terrain, vegetation, accessibility, etc.). We 
calculated a moose density index for each cell i delineated as seasonal moose habitat as: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑖𝑖 = 𝑁𝑁𝐻𝐻𝐻𝐻 ÷ 𝛴𝛴𝐻𝐻𝐻𝐻 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 
𝑁𝑁𝐻𝐻𝐻𝐻 was MFWP’s estimate of moose abundance in the HD in which i fell, and 𝛴𝛴𝐻𝐻𝐻𝐻 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 was the area of 
summer or winter moose habitat in that HD. In limited cases where density estimates were unavailable 
within territories partially overlapping national parks, tribal reservations, or neighboring states, we 
interpolated the ungulate indices through inverse distance weighting using the gstat package in R 
(Pebesma 2004). We smoothed each index using 9×9 km2 weighted moving windows. We then calculated 
overall ungulate density indices by summing the indices for deer, elk, and moose for each season, and 
measured the mean value of these seasonal ungulate indices within each KDE. 

Competitor density was based on neighboring packs. Each year, MFWP Wolf Specialists monitored wolf 
packs to estimate territory centroids. We defined neighbors as packs with territory centroids ≤ 25 km of a 
pack’s KDE (Rich et al. 2012). We calculated the mean number of neighboring packs in year T and T+1, 
and scaled this value to number of neighbors per 100 km2 of the focal pack’s territory size to control for 
territory size (as larger territories tend to have more neighbors; Rich et al. 2012).  

Pack size was the mean of sizes reported in year T and T+1. MFWP Wolf Specialists reported pack sizes 
each calendar year. We included known removals (harvest, dispersal, etc.) because these individuals were 
present for part of the year.  



We estimated terrain ruggedness with the Vector Ruggedness Measure (Sappington et al. 2007) using R 
package spatialEco (Evans 2018) and elevation data derived through package elevatr (Hollister and Shah 
2017). Ruggedness represented the mean change in elevation between adjacent 1-km2 raster cells. We 
calculated the mean ruggedness within each KDE. We calculated the mean density of low-use roads 
within each KDE using the most recent road dataset (geoinfo.msl.mt.gov). 

We calculated the mean human density per KDE based on 2010 census data (geoinfo.msl.mt.gov). We 
identified the number of hunter-reported harvest locations (wolves killed via hunting and trapping) within 
the KDE in year T and T+1.  

Analyses 

We analyzed patterns in territory size using generalized linear mixed effect models (GLMMs) in R (R 
Core Team 2020) using package lme4 (Bates et al. 2015) with helper functions from package jtools (Long 
2020), AICcmodavg (Mazerolle 2020), and cowplot (Wilke 2020). As a primary analysis we created 
simple GLMMs for each variable as a single fixed effect plus a random effect for pack identity (family = 
Gaussian, link = log). We included quadratic terms for ruggedness and each mortality risk variable to test 
for a curvilinear relationship (Table 1.2). We considered predictions to have support if the 90% 
confidence intervals (CIs) of the fixed effect’s coefficient estimate did not overlap 0.  

To further investigate patterns in territory sizes, we created complex GLMMs with multiple fixed effects 
plus a random effect for pack identity. We started with a global model containing all variables. We next 
developed 14 reduced models containing each 1-, 2-, and 3-way combination of the benefits and costs 
(i.e., food alone, food and competition, etc.). No variables were overly correlated (> 0.7 Spearman’s rank 
correlation; Dormann et al. 2013). To avoid fitting overly complex models, we retained 1 quadratic term 
per model. We included an interaction between competitor density and pack size in some models because 
we expected pack size could be more important at high competitor densities. We also varied which 
mortality risk variable received a quadratic term. We identified the most supported models using Akaike’s 
information criterion corrected for small 
sample size (AICc; Burnham and 
Anderson 2002) with a cut-off of ∆AICc 
= 2 (Anderson et al. 2001). Results were 
based on centered and scaled variables 
(units accordingly were standard 
deviations from the mean).  

Results  

From 2014 – 2019, 93 wolves were 
captured and GPS-collared. Collar data 
were collected from January 1, 2014 – 
May 20, 2019. Mean collar deployment 
length was 10.20 months, primarily as a 
result of collar failures (n = 36), harvest 
(n = 21), and other mortalities (e.g., 

Figure 1.4. Annual territory size estimated for packs in Montana from 
GPS-collared wolves, 2014 – 2019.  
 Table 1.3. Mean sizes for wolf territories in Montana, 2014 – 2019. 

Measurement Arithmetic 
𝑥̅𝑥 territory 
size (km2) 

SD 
(km2) 

Min. Max. Geometric 
𝑥̅𝑥 (km2) 

95% KDEs 582.02 420.21 187.71 2207.42 483.62 

90% KDEs 440.89 390.86 137.82 1592.00 366.50 

 



after livestock depredations or by vehicle strikes, injuries, or poaching; n = 22). Of 15 identified 
dispersals, 9 led to joining or forming other territories. Remaining dispersals yielded 3 mortalities, 2 
emigrations to Idaho, and 1 emigration to Wyoming before returning to the wolf’s natal territory.  

From data for wolves that remained a resident of a pack for ≥ 70% of a year, we estimated 43 territories 
of 28 packs (Fig. 1.3). After averaging by pack, arithmetic mean territory size was 582.02 km2 for 95% 
KDEs and 440.89 km2 for 90% KDEs (Fig. 1.4; Table 1.3).  

Our primary analysis revealed that territories were smaller in areas of greater ungulate densities, in areas 
with greater competitor densities, and for packs of greater size (Fig. 1.5). Territories had an n-curvilinear 
response to terrain ruggedness (i.e., initially increasing before decreasing). Greater density of low-use 
roads was also associated with smaller territories. There was no evidence of a curvilinear response to low-
use roads or human densities. Territory size had an n-curvilinear response to harvest mortalities.  

The top complex GLMM included the variables for food, competition, and mortality risk (Fig. 1.6). 
Territory size had a negative relationship with the winter ungulate index, competitor density, and pack 

 
Figure 1.5. Patterns associated with annual and seasonal space use. Lines depict 90% confidence intervals (CIs), thin tails 
represent 95% CIs, and points represent mean estimates. Variables refer to ungulate density indices (“summer ungulates” and 
“winter ungulates”), competitor density (“competitors), low-use road density (“roads”), local human density (“density”), and 
local harvest mortalities (“harvest”). Quadratic terms tested for a curvilinear response.   
 



size, and ambiguous relationships with 
the summer ungulate index, human 
density, and harvest mortalities.  

Discussion  

Empirically-observed patterns in space 
use were consistent with hypotheses 
and predictions for the economical 
selection of territories in the Montana 
wolf population. As hypothesized for 
many territorial animals (Sells and 
Mitchell 2020), wolves appear to select territories that maximize benefits of food resources and minimize 
costs of competition, travel, and mortality risk.  

Economical territories should be only large enough to provide requisite resources for survival and 
reproduction (Mitchell and Powell 2004, 2007, 2012), and exclusive access to food resources has long 
been expected to be a primary benefit of territoriality (Brown 1964, Hixon 1980, Carpenter 1987, Adams 
2001). Results supported the hypothesis that food resources are a primary benefit driving territory 
selection by wolves. Aligning with predictions of the mechanistic model, space use decreased with greater 
densities of ungulates (Fig. 1.5), which is consistent with other similar populations (Fuller et al. 2003, 
Jedrzejewski et al. 2007, Kittle et al. 2015).  

Competition is inherent to territoriality and should therefore be a primary cost of space use in territorial 
animals (Brown 1964, Hixon 1980, Carpenter 1987, Sells and Mitchell 2020). Supporting this hypothesis, 
territories were smaller in areas of greater densities of neighboring territories (Fig. 1.5; Table 1.2). 
Matching the prediction that territories would compress with increasing levels of competition, territories 
were 26% smaller than observed at lower population densities (Rich et al. 2012). Due to territory 
compression, populations with relatively stable spatial distributions cannot be assumed to have stable 
dynamics in competition and densities within. 

Territory holders with lower competitive ability may pay higher costs to compete against more-
competitive conspecifics (Sells and Mitchell 2020). Among social carnivores, competitive ability appears 
linked to group size (Packer et al. 1990, Sillero-Zubiri and Macdonald 1998, Cassidy et al. 2015). As 
predicted if cost of competition varies inversely with pack size (Figs. 1.5 – 1.6; Table 1.2; Sells and 
Mitchell 2020), territories were smaller for packs of greater size in our high-density population (an 
average estimated 11 – 13 individuals per 1,000 km2; Inman et al. 2019). Although it might be assumed 
that larger packs require greater area to provide sufficient food resources, larger territories do not 
necessarily provide more resources, particularly after accounting for energetic costs of maintaining a large 
territory. If animals defend areas to satisfy energetic requirements, territories will be smaller in areas with 
more food resources (Table 1.2).  

Travel is likely a primary cost of territoriality because energy is needed to access and defend resources 
(Mitchell and Powell 2004, 2007, 2012, Sells and Mitchell 2020). Costs of travel are likely to be 
influenced by numerous environmental variables and a species’ evolutionary traits (Shepard et al. 2013, 

 
Figure 1.6. Variables in the top complex model for space use. Lines 
depict 90% CIs, thin tails are 95% CIs, and points are mean estimates. 
 



Wilson et al. 2015). In our study system, we expected costs of travel to increase with terrain ruggedness 
and decrease with low-use roads (Table 1.2; Whittington et al. 2005, Oakleaf et al. 2006, Zimmermann et 
al. 2014). As expected, space use increased and then decreased curvilinearly with greater terrain 
ruggedness (Fig. 1.5), suggesting that larger territories help offset costs of ownership until such trade-offs 
become uneconomical (Sells and Mitchell 2020). Similarly, territories were smaller in areas with more 
low-use roads (Fig. 1.5), suggesting that low-use roads decrease cost of territory ownership by reducing 
cost of travel.  

Mortality risk may also be a primary cost of territoriality if it affects how animals select and use their 
territories. As predicted (Table 1.2; Sells and Mitchell 2020), territories in our system increased and 
decreased curvilinearly with increasing harvest mortalities (Fig. 1.5). This response suggests that avoiding 
areas perceived as high mortality risk may necessitate expanding one’s territory to offset resources lost by 
avoidance. Eventually this expansion may become uneconomical, causing territories to contract as other 
tradeoffs are made (Sells and Mitchell 2020). Variables related to human presence had ambiguous effects 
(Fig. 1.5), providing evidence that direct mortality hazards may influence the economic valuation of space 
use more than human presence alone in populations managed through harvest. 

1.4 Mechanistic Wolf Territory Model 

Our next objective was to parameterize and apply the Sells and Mitchell (2020) model (Sect 1.2) to 
produce quantitative, spatially-explicit predictions for wolves in Montana. We aimed to use only readily-
available data to demonstrate the model’s ability to make predictions absent expensive, difficult-to-collect 
datasets, including data for wolves (e.g., omitting GPS data for wolf locations). The ability to predict wolf 
space use absent wolf data would help calibrate iPOM and constitute a strong test of the mechanistic 
model. 

We assessed the model’s ability to predict first-order selection (the geographic range of wolves in 
Montana) and second-order selection (the territories of individual packs; Johnson 1980). After 
ascertaining the model’s predictive power, we used the model to predict territory size and location under a 
range of potential conditions wolves could encounter, such as variable densities of prey and competitors. 

Methods 

Study area 

Our study area was the same as described under Sect. 1.3. 

Estimates of truth 

Estimates of truth were needed to calibrate and evaluate the model. As detailed in Sect. 1.3, empirically-
observed estimates of recent territory sizes (2014 – 2019) were available for 28 packs in Montana. We 
dropped 2 packs whose territories extended beyond the state boundary because data to run the 
mechanistic model were limited to Montana. The remaining 26 territory observations formed the primary 
sample of empirically-estimated territory locations and sizes.  



We also estimated the mean density of packs that occurred in each ecoregion from 2014 – 2019. From the 
territory centroids monitored by MFWP Wolf Specialists each year (Sect. 1.3), we calculated the mean 
density of packs per ecoregion from this period. The population was largely stable in these years (Inman 
et al. 2020) with a density of packs per 1000 km2 equivalent to 1.6 packs in the NRE, 1.4 in the CRE, 1.9 
in the IBE, 0.5 in the MRE, 0.02 in the GLPE, and 0.03 in the GRPE, for a total of 127 packs in Montana.  

We estimated the distribution of real wolves for 2014 – 2019 from monitoring data. These data included 
territory centroids and harvest locations, along with wolf collar locations collected from all wolves 
collared during these years. We plotted locations for territory centroids, harvest locations, and wolf 
locations together as an approximation of the distribution of wolves in Montana during these years. 

As a separate estimate of truth from a different period, we estimated territory size and location using data 
from 10 GPS-collared wolves from 9 packs in 2008 – 2009 and the same steps outlined in Sect. 1.3. We 
also estimated the mean density of packs per ecoregion in each year following the steps described above. 
In 2008, this was equivalent to densities in the NRE, IBE, CRE, MRE, GLPE, and GRPE of 0.9, 1.9, 0.7, 
0.4, 0.02, and 0.03 packs per 1000 km2, respectively. In 2009, respective densities were 1.3, 1.9, 0.9, 0.5, 
0.02, and 0.03 packs per ecoregion. Whereas we ultimately use our primary set of 26 locations and sizes 
of territories for 2014 – 2019 during model calibration and evaluation, we used this secondary set of 9 
locations and sizes for 2008 – 2009 during evaluation only. 

Mechanistic model  

We adapted the mechanistic territory model from Sells and Mitchell (2020) for wolves in Montana. We 
completed simulations using NetLogo 6.1.1 (Wilensky 1999) and analyzed results in Program R (R Core 
Team 2020) using helper functions from package dplyr (Wickham et al. 2020), ggplot2 (Wickham 2016), 
and cowplot (Wilke 2020).  

In the model, agents representing wolf packs were added to a landscape parameterized to represent 
Montana. This consisted of a grid of 1-km2 patches, 929 × 540 patches in size. Each patch varied in its 
benefit of food resources and costs of travel and mortality risk (competition arose during simulations 
through interactions among agents). Our spatial density indices for ungulates represented the seasonal 
benefit of food for wolves using the same ungulate data described in Sect. 1.3. Travel cost to each patch 
incorporated distance and a terrain ruggedness index, representing the average change in elevation 
between adjacent 1-km2 patches. The cost of mortality risk for each patch was based on human density. A 
density threshold (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇) was also set to specify the density of agents per 1000 km2 to be modeled. 

As in the original model, territories were selected and defended (Fig. 1.2). Agents were added to a 
random starting patch in Western Montana (within the NRE, CRE, IBE, or MRE; Fig. 1.3). Because 
wolves in Montana rely on migratory ungulates, seasonal territories were selected to meet resource 
requirements for summer and winter. The full territory constituted the sum of these selected patches and 
travel corridors to reach them from the agent’s territory center. The cycle of steps proceeded as in the 
original model (Fig. 1.2, Sect. 1.2), whereby agents continued selecting, modifying, and defending 
territories in response to decisions made by neighboring agents. Throughout each simulation, the density 
of agents per ecoregion was tracked. Once 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 was reached in an ecoregion, no new agents could 
settle there. Once 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 was reached in all ecoregions, the simulation ended.  



Model output included territory size, overlap, and spatial extent. Territory size was the number of 1-km2 
patches in the territory and territory overlap was the percentage of the territory overlapping other 
territories. The model saved a raster dataset of the spatial extent and sizes of territories. To do so, each 
agent transmitted its territory size onto patches it owned; shared patches were assigned the mean territory 
size of the agents claiming them. This created a spatial layer of locations and sizes of predicted territories 
at a 1-km2 resolution. The model also recorded each agent’s number of nearby competitors (# of other 
agent territory centers ≤ 25 patches from the territory border) and mean human density per territory patch. 

Model calibration 

Because resource requirements and the costs of competition, travel, and mortality risk for wolves was 
unknown, calibration was required to identify parameter values for wolves (Sells et al. in review a; 
Grimm and Railsback 2005). This calibration step involved a substantially different application of the 
model than used for drawing inferences and assessing the model’s predictive performance. As outlined 
above, in the primary model application agents were added randomly to the landscape. Agents had no 
information about locations of real territories. In contrast, during calibration we adjusted the model to 
manually settle an agent at the center of each of the 26 empirically-observed territories from 2014 – 2019. 
The 26 agents selected optimal territories with respect to their locations on the landscape and the 
parameter values encountered. We then calculated the mean squared error (MSE) in the size of each 
predicted versus observed territory. We repeated these steps as we iteratively varied each parameter over 
a wide range. We then identified the set of parameter values that produced the smallest average MSE 
across the 26 packs, and used the identified parameter values when applying the model.  

Model application 

Our primary model application evaluated its predictive power. We simulated conditions experienced by 
packs in Montana from 2014 – 2019. We set 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 per ecoregion to the mean density of packs that 
occurred in the respective ecoregion during these years. We repeated 50 iterations of the simulation to 
capture variability in results. We assessed the model’s predictive ability by comparing accuracy in 
predicted versus observed territory distributions, territory sizes, and patterns in relation to food, 
competition, and human density. For the comparison of territory distributions, we merged the raster 
datasets from the 50 model runs to identify where the predicted territories occurred, then overlaid this 
with the estimated distribution of real territories. For the comparison of individual territory sizes, we 
calculated the mean of the 50 raster datasets. We then measured the mean size predicted within each of 
the 26 real territory boundaries and compared this to the observed size. We also plotted the sizes of the 
simulated territories versus the 26 real territories in relation to prey density, competition, and human 
density. 

We next evaluated the model’s predictive capacity for an earlier period. We set 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 per ecoregion 
to the density of packs that occurred in the respective ecoregion during 2008 and ran 50 iterations of the 
model. We calculated the mean of the 50 rasters and measured the predicted territory sizes for wolves 
collared in 2008. We then repeated this using the identified 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 per ecoregion for 2009. We 
compared observed versus predicted territory sizes of the 9 packs with collared wolves from 2008 – 2009. 



We next applied the model to predict outcomes under alternate environmental and social conditions. We 
first predicted outcomes under changing densities of prey in Western Montana. We retained the settings 
from the primary model application but scaled the density of prey to 50%, 75%, 125%, and 150% of the 
main prey densities estimated. We repeated 50 iterations at each relative prey density. We next simulated 
increasingly intense competition among packs for space in Western Montana. We set 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 
incrementally from 0.1 – 2.5 agents per 1000 km2, in increments of 0.1. We repeated 50 simulations per 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 and summarized the predicted territory sizes under these densities. 

Results 

The model successfully predicted the distribution of wolves in Montana. The observed locations of 
wolves versus predicted distribution of territories from 2014 – 2019 were broadly aligned (Fig. 1.7). 
Areas not known to be used by real wolves in Western Montana were largely avoided by simulated packs, 
such as in the Flathead and Bitterroot Valleys. The distribution of real wolf locations was noticeably 

 

Figure 1.7. Predicted distribution of territories for 2014 – 2019 on a 1-km2 grid (gray shading), alongside observed locations of 
wolves during this period (territory centroids, GPS locations for collared individuals, and harvest mortality locations). 
 



patchy in the MRE (southwestern 
Montana), and the model replicated the 
approximate locations of used space well. 
The model predicted a slightly broader 
distribution of territories in central Montana 
(including parts of the GLPE and GRPE) 
than were known to occur there. This was 
expected because agents were randomly 
initiated in Western Montana and small 
sections of the MRE fell within this area. 
Placement of territories varied by 
simulations, and these areas of central 
Montana were not commonly predicted to 
hold territories. Nonetheless, these areas 
may have been missed by past monitoring 
efforts or forecast sites that may be selected 
by wolves in the future. 

The model successfully predicted the 
territory sizes observed in real packs (Fig. 
1.8). The mean difference in predicted 
versus observed territory size for the 26 real 
territories was 202 km2. Omitting one large 
outlier territory resulted in a mean 
difference of 146 km2. Of the 26 
territories, 42.3% predicted territory 
sizes were within 100 km2 of the 
observed size and 80.8% were within 
200 km2. Interestingly, the 19.2% of 
territories with lower accuracy (>200 
km2 difference in predicted versus 
observed sizes) were generally those 
with visible extra space estimated 
around the wolf locations (Fig. 1.7). 
This byproduct of kernel density 
estimation represented uncertainty in the 
exact extent of the territory boundaries; 
the primary space used by all but 1 of 
this subset of wolves was both predicted 
and observed to be smaller than the full 
territory boundary that was estimated as 
truth.  

The model successfully predicted the 
sizes of territories from 2008 – 2009 

 
Figure 1.8. Comparison of predicted versus observed territory sizes 
for 26 GPS-collared packs (2014 – 2019), as well as 9 packs from 
2008 – 2009. The solid line represents perfect precision, and dotted 
lines represent estimates with a difference of ≤ 200 km2 in predicted 
versus observed territory size. 

 

 

                  
              

      

 
Figure 1.9. Territory sizes from 2014 – 2019 were predicted to vary by 
ecoregion (Fig. 1.3). These predictions aligned well with observations.  

 

 

                  
              

      



(Fig. 1.8). The mean difference in predicted versus observed territory size for these 9 earlier territories 
was 256 km2. Omitting one large outlier territory resulted in a mean difference of 127 km2. Of the 9 
territories, 44.4% were within 100 km2 of the observed size, and 66.7% were within 200 km2; all but the 
one outlier territory were within 300 km2.  

Predictions by ecoregion tracked trends observed empirically (Fig. 1.9). The same was true for 
predictions in response to food abundance (Fig. 1.10), competitor density (Fig. 1.11), and human density 
(Fig. 1.12). As originally predicted (Sells and Mitchell 2020) and demonstrated statistically for wolves 
(Sect. 1.3; Sells et al. in press), territory size declined with increasing food abundance and more 
neighboring packs. Territory overlap was predicted to increase under the same circumstances. Similar to 
predictions from Sells and Mitchell (2020), territory size was predicted to increase and then decrease 
curvilinearly with an increase in mortality risk (Fig. 1.12). 

The model also predicted outcomes in space use under changing environmental and social conditions. It 
predicted that territories would increase in size and decrease in overlap if prey densities declined (Fig. 
1.13). Mean territory size was predicted to be 515 km2 or 487 km2 at prey densities of 50% or 75% of 
current levels, respectively, with mean overlap decreasing to 3.4% and 7.9%. Conversely, mean sizes 

 
Figure 1.10. Territory size was predicted to decline whereas overlap was predicted to increase with greater summer and 
winter densities of ungulates. These predictions were closely aligned with empirical observations. Lines depict smoothed 
conditional means (method = local polynomial regression) for predictions. 

 

 

                  
              

      



were predicted to decline to 449 km2 or 410 km2 at prey densities of 125% and 150% of current levels, 
respectively, with mean overlap increasing to 22.0 and 25.2%. Changes in social conditions also affected 
space use (Fig. 1.14). Territory size on average declined with an increase in pack density. As an 
exception, territory size in the NRE initially increased as pack densities transitioned from 0.1 to 1.0 packs 
per 1000 km2 before again declining at pack densities > 1.0. The range in territory sizes was consistently 
greatest at low pack densities. Differences in mean territory sizes by ecoregions were initially pronounced 
but became more uniform across ecoregions at approximately 1.0 packs per 1000 km2.  

Discussion 

We demonstrated the strong potential for a mechanistic modeling approach centered on optimal foraging 
theory to predict space use and advance scientific understanding of mechanisms driving spatial behavior. 
Our mechanistic model based on simple rules for economical territory selection successfully predicted 
locations and sizes of real wolf territories using limited data. Demonstrating the model’s ability to predict 
first-order selection, the distribution of predicted territories closely matched the estimated distribution of 

 
Figure 1.11. The model predicted territory size would decline 
and overlap increase with increasing competitor density 
(measured as the # of neighbors per 100 km2 in territory size), 
as observed empirically. Lines depict smoothed conditional 
means (method = generalized additive model) for predictions. 

 
Figure 1.12. The model predicted territory size and overlap 
would increase and then decrease in response to increasing 
human densities. Lines depict smoothed conditional means 
(method = generalized additive model) for predictions. 3 outlier 
observations are omitted (densities of 26 – 72 humans per mi2). 



real space use of wolves in Montana (Fig. 
1.7). At the second-order level, the model 
predicted individual territory sizes (Fig. 1.8) 
and replicated empirically-observed patterns 
in relation to variable ecoregions, prey 
densities, competitor densities, and mortality 
risk (Figs. 1.9 – 1.12). Ability to predict 
space use provides strong evidence that 
wolves select territories economically based 
on the benefits and costs of territory 
ownership. 

The model’s first-order predictions replicated 
the distribution of real wolves while also 
revealing areas where territories may have 
gone undetected in the recent past and where 
they may occur in the future (Fig. 1.7). 
Territories predicted in areas where few have 
been confirmed (e.g., in some mountain 
ranges in central Montana) may have been 
used by real wolves who did not successfully 
sustain territories, as territories had to be identified and remain occupied through each calendar year to be 
recorded (Inman et al. 2020). These areas include island mountain ranges surrounded by ranchlands 
where human-wolf conflicts can be high, potentially decreasing the odds a pack persisted. Wolves are 
commonly reported by the public to occur and have occasionally been harvested in these areas (Fig. 1.7), 
indicating that real wolves do use them during extra-territorial forays, dispersal, or as sites of attempted 
territories. As wolves continue expanding their range, new territories may be successfully settled in the 
areas predicted.  

The model successfully predicted individual territory sizes, both for our original dataset of 26 observed 
territories from 2014 – 2019, and for a former dataset of 9 territories from 2008 – 2009 (Fig. 1.8). The 
original dataset was used briefly to help calibrate the model whereas the former dataset was held out of 
model calibration entirely, demonstrating the need for only a limited location dataset for model 
calibration to enable successful prediction of second-order space use. 

The model’s mechanistic approach to understanding space use and its successful replication of patterns 
observable in nature reveal how differing conditions will influence spatial behavior. Economical territory 
selection leads to differences in territory sizes by ecoregion (Fig. 1.9). These density plots are expected to 
better depict the true variation in territories in Montana than could be summarized from limited empirical 
observations. Spatial variation in territories can arise through disparities in any one benefit or cost of 
territory ownership (e.g., prey or pack densities), or as an outcome of the interacting effects of these 
benefits and costs. Spatial variation in mean territory size will influence the local densities of packs and 
abundance estimates from iPOM. Accordingly, this spatial variation in territory sizes can be incorporated 
into iPOM to improve accuracy of abundance estimates.  

 
Figure 1.13. Example predictions under potential conditions 
wolves may encounter whereby prey densities have decreased or 
increased from current levels. Density plots show that mean 
territory size increased and overlap decreased as prey density 
declined; the range in territory sizes also increased. As prey density 
increased, mean territory size declined and overlap increased. 
 

 



Predictions related to the density of prey (Fig. 1.10) demonstrate the important effects of food resources 
on space use. By maintaining economical territories, wolves can be expected to generally compress their 
territories and increase territory overlap in response to greater prey abundances. Smaller territories with 
more overlap mean that densities and numbers of packs are likely to be relatively high where prey 
populations are high. Fluctuating prey populations can be expected to cause territory size and overlap to 
also fluctuate. Altogether these effects could influence the accuracy of abundance estimates from iPOM if 
not unaccounted for, particularly when estimating wolf abundances at finer spatial scales than the 
statewide level, where local prey populations can be highly variable. Using this understanding of how 
prey populations influence space use, iPOM estimates can be calibrated for finer spatial scales (e.g., at 
MFWP regional management levels) and into the future as prey populations fluctuate.  

By maintaining economical territories, wolves can be expected to compress their territories and increase 
territory overlap in response to greater inter-pack competition (Fig. 1.11). Packs may therefore reach 
higher densities than would be estimated using a snapshot of average observed territory sizes alone. For 
example, Rich et al. (2012) reported an average territory size of 599.8 km2 for packs in 2008 – 2010. 

 
Figure 1.14. Example predictions under potential conditions wolves may encounter whereby group densities have decreased 
or increased from current levels. The lower panel contains density plots and the mean (circle) and median (line) territory 
sizes observed. The predictions for the CRE end at 1.5 because no additional simulated packs successfully established 
territories past this density.  



Although this mean territory size has been presumed to date to be unchanged, territory sizes have 
considerably declined when estimated for 2014 – 2019 using comparable methods (Sect. 1.3). Territory 
compression explains why the estimated distribution of wolves has not increased at comparable rates as 
the estimated number of packs. For example, an estimated ~65% increase in the number of packs from the 
years of Rich et al. (2012)’s study to ours yielded an estimated 41% increase in area occupied (Inman et 
al. 2019). Packs are thus likely to have more neighboring territories in recent years than they did a decade 
ago, increasing the costs of competition and leading to territory compression. Fritts and Mech (1981) also 
reported that territories shrank by as much as 68% as density of packs increased during recolonization in 
Minnesota. Occupancy and wolf distribution can be expected to be more stable than territory sizes and 
pack densities as packs adjust their space use in response to levels of intraspecific competition. 
Understanding these dynamics will be important for keeping iPOM estimates calibrated as the wolf 
population fluctuates. Assessing wolf occupancy without also accounting for territory sizes within the 
occupied area could easily over- or under-estimate wolf abundance estimates. 

Predictions related to human density support the hypothesis that the cost of mortality risk affects territory 
selection by wolves in Montana (Fig. 1.12). We observed that running the model without a cost of 
mortality risk led some simulated wolves to settle relatively urban areas (e.g., the broad Flathead and 
Mission Valleys in northwestern Montana), whereas they avoided urban areas if this cost contributed to 
the values of potential territory patches. As no data exist for how costs of mortality risk affect the 
economic value of patches for wolves, we had to assume that we suitably represented these costs in the 
model. Our results are intuitive, however. Human settlements often occur along Montana’s valley 
bottoms, which also attract ungulates. These areas were likely used by wolves prior to heavy habitation 
and mortality risk by humans. Wolves in our study area faced risk of mortality through harvest and 
control removals in response to livestock depredations. We expect that in areas with lower human-caused 
mortality risk, e.g., national parks, the risk of mortality from humans is relatively less important to how 
wolves select territories.  

We know of no other model for animal space use capable of accurately predicting territory sizes of 
individual animals or groups and a population’s distribution, particularly absent extensive data for 
movements and resource availability. Ultimately, the dynamic fluctuations and large variations in territory 
sizes within a population make it difficult to draw inferences about a population’s spatial requirements 
absent approaches such as ours. Any empirically-observed territory is a snapshot in time and assumes an 
individual’s movements revealed the full extent of the territory and no extraneous movements (e.g., 
during extra-territorial forays prior to dispersal). The true territory mosaic at any given time could only be 
observed empirically if all individuals in a population were simultaneously collared. Our approach 
uniquely enabled predicting these mosaics for the full population using limited data and under varying 
conditions.  

Management implications 

Wildlife conservation agencies like MFWP require information about animal behavior, numbers, and the 
anticipated effects of conservation actions. Such information is challenging, costly, and time-consuming 
to gather. Efforts often include the use of radio- or GPS-transmitters to track movements, but particularly 
for elusive large carnivores like wolves, it can take weeks or more to successfully capture a single 
individual. Post-capture, equipment failures and mortalities can easily cut short the lifespan of a 



transmitter, challenging efforts to gather ongoing data to understand and monitor spatial behavior. 
Furthermore, inferences from empirical approaches are generally limited to the time and place from 
which data were collected, as such approaches tend to describe space use but do not reveal the causal 
mechanisms underlying behavior.  

Our mechanistic approach to modeling animal space use provided a linkage between theory and 
conservation and made predictions applicable to ecology absent extensive data for animal movements or 
resource availability. Model parameterization used only readily available data, i.e., indices for ungulate 
densities, terrain ruggedness, and human densities. Our approach enabled simulating a suite of potential 
conditions to produce predictions for the full population and potential future conditions, absent any 
additional data. The model is expected to be predictive and reliable across a full range of current and 
future conditions because it was founded on hypothesized drivers of behavior (Sells et al. 2018). The 
model’s spatially-explicit predictions can be used to estimate the abundance of territories, carrying 
capacity, and effects of conservation actions or environmental change. Linking the model’s estimates of 
territory size and overlap with the spatially-explicit occupancy probabilities produced through iPOM 
(Sect. 1.1) will enable summarizing the estimated number of packs at finer spatial scales, e.g., at MFWP 
regional levels. Ability to predict the effects of changing conditions will enable calibrating iPOM into the 
future, absent intensive monitoring efforts.  

We expect this mechanistic approach centered on optimal foraging theory and explicit modeling of 
economical behavior has far-ranging potential. Primary challenges of our approach include the necessity 
of strong coding skills and sufficient data, including indices representing the hypothesized benefits and 
costs of space use, and location data for initial model calibration and evaluation. We demonstrated the 
utility of even simple indices from readily-available datasets. The foundation provided by Sells and 
Mitchell (2020) and this study are adaptable to different contexts or to further improve predictive 
capacity, such as by modifying model rules or data inputs. Similar approaches could be taken to not only 
predict first- and second-order habitat selection by wolves in other areas, but for other species. The 
approach is not limited to territorial species; minor changes to the model would extend it to home ranges 
in general, further expanding the opportunity to study and understand animal spatial behavior.  

1.5 Group Size Models 

To help calibrate iPOM, we aimed to better understand mechanisms influencing wolf pack size. As with 
populations, groups and group sizes are shaped by births, deaths, and social decisions about group 
membership. The outcome of these decisions can strongly shape demographic processes, particularly for 
species like wolves, in which only a dominant pair generally breeds (Clutton-Brock 2016). Behaviors as 
fundamental as group living should be strongly shaped by natural selection (Emlen 1982, 1994, 1995; 
Krebs and Kacelnik 1991). Decisions about group membership are thought to ultimately be driven by 
factors related to resource competition, kin interactions, inbreeding avoidance, or habitat quality (Emlen 
1982, 1995; Bowler and Benton 2005). Whereas in some carnivorans dominant individuals enforce 
eviction of subordinates (Cant et al. 2001; Grinnell et al. 1995; Stephens et al. 2005), in other species like 
wolves, decisions to emigrate are likely influenced by economic considerations for both dominants and 
subordinates. In such cases, subordinates should be accepted when the benefits to dominant individuals 
outweighs the costs of a subordinate’s presence, and otherwise encouraged to leave. Subordinates should 
likewise remain only while the benefits they gain by staying exceed their costs (Emlen 1982, 1994, 1995). 



Similarly, given an option, dominant individuals should only accept immigrants when in the dominant’s 
economic interest; likewise, immigrants should only join groups when in their economic interest. 

We hypothesized competition is a primary factor influencing the size of groups. By reducing per capita 
resources, larger groups may experience fewer births and more deaths. Mortality rates may also rise 
through conspecific aggression within or among groups. Competition likely also influences the economics 
of social decisions (Emlen 1982, 1994, 1995). An increase in the density of nearby groups may signal less 
space for new home ranges and greater risk of conspecific mortality while emigrating, causing a positive 
effect on group size as subordinates delay leaving. Additionally, dominant individuals may be more 
accepting of subordinates and immigrants at high group densities, when territorial disputes may increase 
and having a larger group can increase the odds of winning confrontations (Mosser & Packer 2009; 
Cassidy et al. 2015). Accordingly, if there is a large positive effect on social decisions, group size may 
increase with competition even if birth rates fall and death rates rise (Table 1.4). Delayed dispersal may 
also lead to greater birth rates through multiple breeders (Ausband 2018), further contributing to a 
positive effect of competition. Alternatively, a negative or null relationship between competition and 
group size would occur if individuals leave at greater rates to avoid this competition, or social decisions 
simply do not offset effects on births and deaths. 

We hypothesized that conditions related to prey also influence births, deaths, and social decisions. Birth 
rates may fall and death rates rise if prey acquisition falls below per capita requirements (Fuller et al. 
2003). If subordinates cannot meet their food requirements, leaving is likely the optimal decision; 
additionally, dominant individuals might increase aggression or withhold resources to further encourage 
emigration (Mech 1999, Peterson and Ciucci 2003). Conversely, in addition to potentially increasing birth 
rates and reducing death rates, greater access to food resources may increase the group sizes that can be 
maintained, allowing dominants to tolerate subordinates and accept immigrants, and enticing subordinates 
to stay. For these reasons we expected that group size would positively correlate with prey abundance and 
availability (Table 1.4; Mech & Boitani, 2003). We alternatively hypothesized that higher prey abundance 
may signal subordinates that conditions are conducive to forming one’s own group in which to breed, 
increasing emigration and resulting in a weak or nonexistent relationship between group size and prey.  

Mortalities directly decrease group size, but we hypothesized they also have wider effects. Deaths of 
parents or helpers may lead to further deaths of dependent young (Ausband et al. 2017). Survivors may 
also have more difficulty hunting prey (Creel and Creel 1995), defending territories (Cassidy et al. 2015), 
and assisting injured or sick group members (Almberg et al. 2015). We also expected that mortalities or 
even a perceived risk of mortality could influence the economics of social decisions. As the risk of dying 
increases locally, subordinates might leave to avoid this risk and the consequences of losing group 
members. Subordinates may also be pressured or opt to leave if larger groups are more easily detected by 
predators. Emigration may be economical if dominant individuals are replaced by non-relatives, reducing 
inclusive fitness benefits (Emlen 1995). Smaller groups would be the outcome of these mortalities and 
behavioral responses (Table 1.4). Alternatively, mortalities could cause group size to stabilize or increase 
if decreased survival leads to compensation through increased reproduction or larger litters. Similarly, 
emigration may decrease and immigration increase if predation risk is diluted in larger groups.  

We evaluated our hypotheses about group size using a 14-year dataset of wolf pack sizes observed in 
Montana. We used our previously-developed index for prey abundance (Sect. 1.3), and terrain ruggedness 



as an index for prey availability. We expected that greater terrain ruggedness could negatively influence 
pack size by decreasing the availability of ungulates because wolves are coursing predators (Peterson and 
Ciucci 2003) who may make more kills at lower elevations (McPhee et al. 2012) and may have lower 
hunting success in rugged terrain (Rich et al. 2012). We expected that several factors would influence 
mortality risk to wolves, including hunting, trapping, deaths in response to livestock depredations (i.e., 
control removals), and intensity of harvest management (Table 1.4). Additionally, greater human densities 
could mean more hunters and mortalities, plus greater perceived mortality risk given the natural wariness 
of wolves towards humans (Hebblewhite & Merrill 2008; Latham et al. 2011; Whittington et al. 2004). 
Mortality risk could also increase in human-dominated landscapes (e.g., agricultural areas), and with low-
use roads, which humans may use while hunting or otherwise recreating. 

Table 1.4. Hypothesized relationships between wolf pack size and variables related to competition, prey, and mortality risk (ο 
denotes neutral outcome expected for group size). We considered hypotheses to be supported when 90% confidence intervals did 
not overlap 0.0, as determined by variables included in the top models (Fig. 1.161) or through secondary analyses of models with 
single fixed effects (denoted by *). Bold text signifies the hypotheses with support. 
 

Variables hypothesized to influence group size Expected 
relationship 

Alternative 
expected 

relationship 

ß CIlower CIupper 

Competition      

Density of groups H1: +  H1-alt: ο 0.082 0.039 0.124 

Prey      

Summer ungulate density H2a: +  H2a-alt: ο / − 0.014 −0.028 0.055 

Winter ungulate density H2b: +  H2b-alt: ο / − 0.008 −0.031 0.046 

Summer deer density H2c: +  H2c-alt: ο / − * 0.007 −0.033 0.048 

Winter deer density H2d: + H2d-alt: ο / − 0.014 −0.029 0.058 

Summer elk density H2e: + H2e-alt: ο / − 0.018 −0.027 0.063 

Winter elk density H2f: +  H2f-alt: ο / − 0.013 −0.027 0.054 

Terrain ruggedness H3: −  H3-alt: ο / + −0.051 −0.092 −0.010 

Mortality risk      

Harvest mortality density H4a: −  H4a-alt: ο / + −0.012 −0.063 0.039 

Control removals H4d: −  H4d-alt: ο / + −0.061 −0.098 −0.027 

Intensity of harvest management (restricted) H4e: −  H4e-alt: ο / + −0.089 −0.183 0.004 

Intensity of harvest management (liberal) H4f: −  H4f-alt: ο / + −0.193 −0.298 −0.087 

Human density H4g: −  H4g-alt: ο / + 0.025 −0.009 0.059 

Human-dominated area  H4h: −  H4h-alt: ο / + * 0.000 −0.035 0.035 

Density of low-use roads  H4i: −  H4i-alt: ο / + −0.013 −0.053 0.027 

1. The variable values shown are from the highest-ranked model with the given variable. 

 
 



Methods 

Study area 

Our study area was the same as described under Sect. 1.3 (Fig. 1.3). 

Data  

Wolf Specialists from MFWP monitored packs through radio-tracking, camera-trapping, and aerial 
surveys each year from 2005 – 2018 to verify pack presence, count pack members, and estimate year-end 
pack sizes. We retained for analysis only good quality counts, which were from packs documented 
multiple times each year using trail cameras, visual sightings, or track surveys. Wolf Specialists estimated 
an annual territory centroid for each pack. 

We estimated local conditions related to competition, prey, and mortality risk using relevant spatial data 
and program R (R Core Team 2020), as follows. In each case, we measured the mean value of the 
covariate within the local vicinity of the pack’s annual territory centroid (defined as 12.41 km around the 
centroid, based on the 484 km2 geometric mean territory size for wolves in Montana, 2014 – 2019, Sect. 
1.3) using R package raster (Hijmans 2020) and helper functions from packages dplyr (Wickham et al. 
2020), tidyr (Wickham 2020), and AICmodavg (Mazerolle 2020). 

We represented competition as the density of packs. Within each pack’s local vicinity, we measured the 
density of territory centroids per 1000 km2 using the kernel smoothed intensity function in R package 
spatstat (Baddeley et al. 2015) with sigma set to 25 km.  

To represent prey abundance, we used the spatial density indices developed in Sect. 1.3. We included the 
individual indices for deer and elk to measure their separate effects. To represent prey availability, we 
calculated terrain ruggedness using the steps described under Sect. 1.4. Within each pack’s local vicinity, 
we estimated mean ruggedness, representing the mean elevation change among adjacent 1 km2 grid cells.  

For mortality risk, we first estimated the annual density of harvest mortalities (hunting and trapping 
combined) per 1000 km2 using reported locations of harvested wolves and the kernel smoothed intensity 
function in R package spatstat (Baddeley et al. 2015) with a sigma of 25 km. Pack-specific control 
removals were reported in MFWP annual reports (fwp.mt.gov). We classified the intensity of harvest 
management as hunting seasons with no harvest (≤ 2008 and 2010), restricted harvest (2009 and 2011; 
when statewide harvest was limited by a quota, seasons were shorter, bag limits were low, and trapping 
was prohibited), and liberal harvest (2012 on, when statewide harvest quotas were removed, seasons were 
longer, bag limits were higher, and trapping was allowed; fwp.mt.gov). Within each pack’s local vicinity, 
we measured the mean density of humans using 2010 census data (geoinfo.msl.mt.gov), the percentage of 
human-dominated areas using existing vegetation type to identify agricultural and developed areas 
(LANDFIRE 2014), and the mean density of low-use roads using the most recent road dataset 
(geoinfo.msl.mt.gov).  

  



Analyses 

We tested our hypotheses using GLMMs (family = Poisson) with R package lme4 (Bates et al. 2015). We 
designed 20 competing models (Sells et al. in review b) to focus on competition, prey, or mortality risk, as 
well as their combined effects, representing different hypotheses for which factors best predicted pack 
size. We included variables for the density of harvest mortalities, number of control removals, and 
intensity of harvest management in each model because these mortality variables directly influence pack 
size. We avoided combining overly-correlated variables in the same model (> 0.6 Spearman’s rank 
correlation; Dormann et al. 2013). We also added a random effect for pack identity to each model. We 
identified the most supported models using Akaike’s information criterion (AIC; Burnham & Anderson 
2002) with a cut-off of 2 ∆AIC (Anderson et al. 2001) and Akaike weights (𝜔𝜔𝑖𝑖; Burnham & Anderson 
2002). We reported results based on centered and scaled variables, with resulting units representing 
standard deviations from the mean. We considered a hypothesis to have support if the 90% confidence 
intervals (CIs) of the coefficient estimate (ß) excluded 0. Where covariates were omitted from the top 
models identified, we ascertained other evidence of support for hypotheses using GLMMs with a single 
fixed effect for the covariate of interest. To display results, we used R packages ggplot2 (Wickham 2016) 
and jtools (Long 2020), with helper functions from cowplot (Wilke 2020). 

Results  

From 2005 – 2018, MFWP 
monitored 46 – 152 packs per year 
for a total of 1531 pack-years. Of 
these, 26 – 68 packs per year had 
good quality counts, yielding 660 
total pack-years from 220 packs for 
analysis. Annual mean pack size 
ranged 4.86 – 7.03 and overall mean 
pack size was 5.92 (Fig. 1.15). Most 
packs were relatively small, with 
80% containing ≤ 8 members. 

Six models had support (Fig. 1.16). 
These models differed by prey 
indices and mortality risk factors 
included, and revealed similar 
effects on group size. Group size 
increased with density of groups 
and decreased with greater terrain 
ruggedness and control removals 
(Table 1.4). Liberal harvest had a 
negative effect whereas restricted 
harvest had an uncertain effect. 
Group size had no clear relationship 
with densities of prey, harvest 

 
Figure 1.15. Observed wolf pack sizes, 2005 – 2018. Pack sizes ranged 2 – 
22, with a mean of 5.92 and a 50% interquartile range of 4 – 8 members. Gray 
points in Panel A depict observations whereas black points depict outliers. 
Boxplot whiskers in both panels extend 1.5 times the interquartile range. 
 



mortalities, humans, or low-
use roads. Further 
assessment of covariates 
excluded from the top 
models found no measurable 
effect for remaining 
variables (Table 1.4).  

Discussion  

Sociality in carnivores is 
relatively uncommon but 
associated with many 
potential benefits, including 
increased ability to acquire 
resources, decreased risk of 
mortality, and increased 
reproductive success. Group 
size may affect these 
benefits and is driven not 
only by births and deaths, 
but the social decisions of 
group members, including 
whether to stay with or leave 
the group.  

A positive relationship between the density of packs and pack size supported the hypothesis that group 
densities influence the economics of social decisions (Fig. 1.16, Table 1.4). Under that hypothesis, we 
predicted that even if births fell or deaths rose with increased competition, group size would increase if 
social decisions favored staying in the group. Our results align with Emlen (1982)’s hypothesis that group 
living evolved as a result of delayed dispersal in response to habitat saturation, and suggest that, as habitat 
becomes saturated, inclusive fitness may become increasingly important such that subordinates decide to 
stay and help rather than emigrate. Local group densities may serve as an important cue to the costs and 
benefits of staying versus leaving. Detection of local densities of conspecific groups may occur through 
direct interactions and signals such as scent marks or howling (Mech and Boitani 2003). Pre-disposal 
forays may also help an individual investigate the costs and benefits of emigrating. Emigration may lead 
to injury and death through increased encounters with conspecifics at high group densities (Jimenez et al. 
2017). Our results also suggest that dominants may be more accepting of subordinates and immigrants at 
high densities of groups, particularly when a group’s competitive ability and success in defending their 
territory increases with group size (Cassidy et al. 2015, Sells and Mitchell 2020). The patterns we 
observed may have also been driven by enhanced fitness, such as through multiple breeders per group 
(Ausband 2018). Declines in rates of dispersal, however, have been attributed to wolf population 
increases (Jimenez et al. 2017), greater numbers of neighboring prides of lions (Panthera leo; 
VanderWaal et al. 2009), and saturated habitats for Ethiopian wolves (C. simensis; Sillero-Zubiri et al. 

 
Figure 1.16. The top predictive models for pack sizes included variables related to 
competition, prey, and mortality risk. Thicker line segments represented 90% CIs, full 
lines the 95% CIs, and points represented mean estimates. 
 



1996). Similarly, clans of spotted hyenas (Crocuta crocuta) may be prone to fission when there is more 
vacant habitat nearby (Holekamp et al., 1993).   

Wolf packs were smaller where food availability was low (Fig. 1.16, Table 1.4), demonstrating that the 
advantages of sociality may be reduced when food availability declines. Terrain ruggedness served as an 
index to food availability because hunting success may increase in less rugged terrain (McPhee et al. 
2012, Rich et al. 2012). Decreased food availability may reduce a group’s ability to meet its resource 
requirements, potentially reducing births and survival. In similar systems, litter size and pup survival 
appear to correlate with prey biomass (Fuller et al. 2003) and availability (Mech et al. 1998). Smaller 
carnivore groups may likewise occur in response to decreased prey availability if dominants become less 
tolerant of subordinates and subordinates decide to leave (Table 1.4; Ekman et al. 2004). Increased 
emigration may be a contributing mechanism for observed correlations between food and carnivore 
densities (Fuller et al. 2003; Fuller 1989; Mech & Peterson 2003).  

Contrary to our index for prey availability, our indices for prey abundance were not associated with wolf 
pack size (Fig. 1.16, Table 1.4). This supports our alternative hypothesis that an increase in births or 
reduction in deaths with greater prey abundance is offset by a higher rate of emigration because prey 
abundance is a cue to greater odds of finding sufficient resources. Other studies have however reported 
evidence that carnivore dispersal increases in response to low prey availability instead (Messier 1985; 
Peterson & Page 1988; Gese et al. 1996; Fuller et al. 2003). Because deer and elk numbers for our large 
study area were at coarse resolutions, our results may have been a product of the prey data available for 
analysis. Whereas this information successfully helped predict territory sizes (Sect. 1.4), we suspect more 
detailed data tracking temporal trends in prey abundance may be required to detect effects on pack sizes.  

Mortalities may both directly and indirectly influence group size (Fig. 1.16, Table 1.4). Our results 
suggest that control removals, hunting, and trapping may not just directly decrease group size but also 
depress survival of remaining group members (e.g., via higher mortality of young after the death of a 
parent or helper; Ausband et al. 2017). Smaller groups in areas of greater mortalities could also be an 
outcome of emigration by surviving subordinates in response to increased local mortality risk, or reduced 
inclusive fitness after the death of a parent (Emlen 1995). In similar systems, groups appear more likely to 
disband after loss of dominant individuals (Brainerd et al. 2008). Although it might be expected that 
emigration in response to mortalities would lead to voids of groups in high-mortality areas, later 
immigrants would likely not immediately know that mortality risk was locally high, nor have freedom to 
select low-mortality areas (e.g., in protected reserves) if already defended by existing groups.  

Evidence suggests that wolves may partially compensate for a relatively low level of mortality through 
increased births, decreased emigration, or increased immigration. Restricted harvest occurred in 2 years 
punctuated by a year without harvest and had no appreciable effect on wolf pack size during this period 
(Fig. 1.16, Table 1.4). This could have been an outcome of the restricted harvest regulations (which 
entailed statewide quotas, lower bag limits, and no trapping) or a recovery year absent harvest. More 
liberal harvest regulations (which entailed no quotas, higher bag limits and both hunting and trapping), 
however, had a measurable effect on pack size, potentially because of direct mortality or increased 
emigration. Increased emigration in response to greater harvest intensity would serve to replenish breeder 
or territory vacancies quickly, which in turn could lead to more compensation under intensive harvest 



than may otherwise be expected. This may help explain the apparent overall stability of some harvested 
carnivore populations like ours despite years of intensive harvest (Inman et al. 2019). 

Data for group-specific births, deaths, immigration, and emigration are rarely available, especially where 
large carnivores coexist alongside humans outside protected reserves. We employed a large, long-term 
dataset to test our hypotheses. Although smaller groups could conceivably be more difficult to find and 
count, 80% of packs monitored contained ≤ 8 members and 51% had ≤ 5 members (Fig 1.15). Undetected 
packs would lead to locally-underestimated densities and likely weaken measurable relationships with 
pack size. We assumed that terrain ruggedness was a credible index to prey availability (Peterson and 
Ciucci 2003, McPhee et al. 2012, Rich et al. 2012), and although its observed relationship with pack size 
could have been related to other factors (e.g., mortality risk), ruggedness had < 0.4 correlation with other 
variables (Sells 2019). Imprecise reports of harvest locations or control removals could also weaken 
relationships between group size and mortality variables. We assumed that data for human density, 
human-dominated areas, and low-use roads did not appreciably change from 2005 – 2018; finer-
resolution data for these variables may reveal relationships with pack size.  

1.6 Predictive Pack Size Model 

Pack size has been integral to MFWP’s abundance estimates since 2007. These data, however, have been 
derived through intensive monitoring efforts to date. Absent annual monitoring data, total wolf abundance 
could be estimated with a model that predicts pack size. A useful model for MFWP would predict pack 
sizes with as few data as possible given the costs and difficulties of monitoring an elusive large carnivore.  

Methods  

We adapted our top group size model (Sect. 1.5) into a predictive model. We aimed to make the model as 
parsimonious as possible, and to require minimal monitoring effort for covariates. We therefore first 
dropped summer ungulate density, harvest density, and low-use road density, which had CIs overlapping 
0 (Fig. 1.16). Because obtaining pack centroids through monitoring is costly, we used the mean pack 
density observed from 2005 – 2018 as an index to long-term density trends. Because control removals 
were pack-specific and this level of detail may not always be available, we used the observation grid of 
600 km2 cells (Sect. 1.1), then summarized the total number of control removals reported in each cell. To 
capture additional environmental effects, we added a covariate representing the pack’s ecoregion (Fig. 
1.3). We included a random effect for the 600 km2 grid cell in which the pack fell in place of a pack-
specific random effect to account for repeated observations among years. We then refit the GLMM.  

We tested our model by comparing predicted versus observed mean pack size each year (2005 – 2018). 
We first measured mean values for model covariates in each 600 km2 POM observation grid cells, then 
predicted pack size per cell by applying the model covariates to each cell. We next obtained the 
probability of occupancy in each cell for each year from 2007 – 2018 (when occupancy data were 
available) from MFWP’s occupancy model (Sect. 1.1; Inman et al. 2019). We calculated the annual mean 
predicted pack size of cells with ≥50% probability of occupancy. For 2005 and 2006 (when occupancy 
estimates were unavailable), we predicted pack size per cell known to have a pack. We estimated a linear 
regression of these predicted versus observed annual mean pack sizes. If the regression slope estimate’s 



95% CI overlapped 1.0 (Rich et al. 2012), we 
considered the model to reliably estimate 
annual mean pack size.  

Results & Discussion 

The predictive model revealed a positive 
relationship of pack size with pack density, 
and negative relationships with ruggedness, 
harvest intensity, and control removals (Table 
1.5). The model reliably estimated annual 
mean pack size, as the linear regression of 
observed versus predicted pack sizes included 
1.0 (ß = 0.81, 95% CI = 0.319, 1.307, R2 = 
0.52, F1,12 = 12.84, P = 0.004).  

Despite omitting direct information  
for births, immigration, dispersal, and  
deaths, our model successfully 
predicted annual mean pack size 
for wolves in Montana (Fig. 
1.17). The model can be used 
alongside the mechanistic 
territory model (Sells and 
Mitchell 2020) and existing 
occupancy model (Miller et al. 
2013, Rich et al. 2013) to 
estimate wolf abundance with 
limited data. Our predictive 
model for pack size therefore 
directly fulfills a conservation 
need by facilitating estimates of 
wolf abundance with limited 
data.  

1.7 Integration of Models: iPOM 

As our final step under Objective 1, we incorporated the territory and pack size models into iPOM to 
estimate wolf abundance.  

Methods 

Occupancy  

To predict where wolves occurred in Montana each year from 2007 – 2019, we fit the multi-season false-
positives occupancy model from POM in a Bayesian context (Bassing et al. 2019). Details of the original 

Table 1.5. The predictive model for wolf pack sizes. Variables 
and their 95% confidence intervals (CIs) are reported on the log 
scale.  

Coefficients Estimate Lower CI Upper CI 

intercept 1.56 1.324 1.803 

mean packdensity 0.44 0.259 0.624 

ruggedness −67.28 −99.661 −34.892 

harvest intensityrestricted −0.06 −0.158 0.043 

harvest intensityliberal −0.18 −0.257 −0.100 

grid-level controlremovals −0.03 −0.049 −0.005 

ecoregion: IBE −0.06 −0.245 0.120 

ecoregion: MRE 0.04 −0.095 0.166 

ecoregion: CRE 0.13 −0.019 0.286 

ecoregion: GLPE 0.03 −0.327 0.390 

ecoregion: GRPE 0.00 −0.320 0.317 

 

Figure 1.17. Predicted annual mean pack sizes reflected observed mean pack 
sizes for wolves in Montana from 2005 – 2018. Predictions were derived using 
our model for wolf pack sizes. 

 



model are provided in past publications (Miller et al. 2013, Rich et al. 2013, Inman et al. 2020). We 
retained the original observation grid for Montana as 600 km2 cells (hereafter, the iPOM grid). We 
assigned to grid cells the locations of wolves based on monitoring effort by MFWP Wolf Specialists and 
wolf sightings reported by hunters each fall. To demarcate approximate territory centroids for packs, Wolf 
Specialists monitored packs each year to verify presence using a combination of trail cameras, visual 
observations, and telemetry collars. MFWP conducted annual Hunter Harvest Surveys of a random 
sample of 50,000 – 80,000 deer and elk hunters annually to obtain wolf sighting reports. Hunters spent 
1.8 – 2.2 million hunter days each fall pursuing deer and elk (fwp.mt.gov), providing many observers 
across Montana. Hunters were queried about dates and locations of any sightings of groups of 2 – 25 
wolves.  

To develop encounter histories, we divided the 5-week general rifle season (occurring each year around 
late Oct through Nov or early Dec) into one-week encounter periods and mapped locations of pack 
centroids and hunter observations for each week. Based on past work (Miller et al. 2013, Rich et al. 2013, 
Inman et al. 2020), we included model covariates for detection as: 1) hunter days per km2 in each hunting 
district (an index to spatial effort), 2) proportion of mapped wolf observations (a correction for effort, 
accounting for the number of hunter observations with coordinates versus the total reported, including any 
sightings with vague location descriptions), 3) densities of low-use forested and non-forested roads 
(indices of spatial accessibility), 4) a spatial autocovariate (the proportion of neighboring cells with 
wolves seen out to a mean dispersal distance of 100 km), and 5) patch area sampled (because smaller cells 
on the border of Montana, parks, and tribal lands have less hunting activity and therefore less opportunity 
for hunters to see wolves). We also included cell size as a nuisance parameter to account for varying cell 
sizes. Model covariates for occupancy, colonization, and local extinction included a principal component 
constructed from several autocorrelated environmental covariates (percent forest cover, slope, elevation, 
latitude, percent low use forest roads, and human population density), and recency (the number of years 
with verified pack locations in the previous 5 years). 

Using these pack locations and model covariates, we fit the multi-season false-positives occupancy model 
to estimate psi, the probability of occupancy (ψ). We used pack centroids to estimate probabilities of false 
positives, true positives, and false negatives (Miller et al. 2013). We estimated ψ for tribal lands and 
national parks, where no hunter survey data were available, via modeled covariates.  

We used Markov chain Monte Carlo (MCMC; Brooks 2003) methods in a Bayesian framework to fit the 
occupancy model using program R 3.4.1 (R Core Team 2020) and package rjags (Plummer, Stukalov and 
Denwood 2019) that calls on program JAGS 4.2.0 (Plummer 2003). We ran 3 chains for 10,000 iterations, 
after an adaptation phase of 10,000 iterations and a burn-in of 10,000 iterations. We did not thin the 
MCMC chains.  

Territory size  

We used the mechanistic wolf territory model (Sect. 1.4) to predict territory size each year from 2007 – 
2019. Monitoring data indicated that pack densities in Montana changed at different rates in different 
places. The mechanistic model demonstrated the strong effect of competition on resulting space use (Sect. 
1.2 – 1.4). Accordingly, as described in Sect. 1.4, we applied the model to predict territory sizes at a wide 



range of possible pack densities (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇) and resulting levels of competition. We used the model to 
also generate a modified measure of territory size for each pack that accounted for overlap: 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑒𝑒𝑒𝑒 + 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑒𝑒𝑒𝑒 −  𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑒𝑒𝑒𝑒−𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + ∑𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

where Nselected-patches was the number of selected patches, Ntravel-patches was the number of patches crossed to 
reach selected patches from a pack’s territory center, Npatches-shared was the number of Nselected-patches and 
Ntravel-patches used by >1 pack, and  

∑𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  �
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where for each patch i - n, Nowners was the number of owners at the patch. This slightly modified measure 
of territory size negated the need for specific estimates of territory overlap in the final iPOM calculations. 
Model output was saved as tables of each pack’s territory size and location.  

To identify the appropriate level of competition to use 
for iPOM, we developed a density identifier model. In 
earlier model applications, we modeled competition by 
simulating territories at the set of known pack centroids 
each year. The resulting iPOM estimates were highly 
comparable to our final iPOM results. In the future, 
however, this application of the mechanistic model 
would have required the time-consuming task of re-
running simulations every year. Our density identifier 
model provided the alternative, simpler link to 
identifying the approximate degree of competition each 
year. For each ecoregion and year from 2007 – 2018, we 
tallied the number of verified packs (Npacks-verified) from 
field monitoring and calculated area occupied 
(∑areaoccupied), which was ψ�  multiplied by the area of 
the ecoregion (ecoregionarea). We then fit a linear model 
in the form of: 
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ~ ∑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼   

This formalized the strong relationship between total 
area occupied per ecoregion and known packs within (R2 = 0.98; Table 1.6). Accordingly, the model 
enabled identifying the appropriate density for each ecoregion in each year (densityidentified), solved for as: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ÷ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 1000 
Finally, we subset the mechanistic model’s estimated territorysize to the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 matching the 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 per ecoregion, per year. This provided territorysize-distribution, the spatially-explicit 
distributions of territory size estimates appropriate to local conditions over time. We assigned each 
distribution of values to the iPOM grid cells within that ecoregion for that year. 

Importantly, the density identifier model provides a means to easily apply the mechanistic model beyond 
2019. Even if minimum pack counts become unavailable or less accurate in future years through reduced 
monitoring effort, the estimated area occupied in each ecoregion will enable predicting the yearly, 
ecoregional-specific level of competition. This approach also helps account for observational uncertainty 
in the number of packs reported each year.  

Table 1.6. Density identifier model results. Ecoregions 
refer to codes on Fig. 1.3. 

Coefficients: Estimate SE Pr(>|t|) 

Intercept -6.849 3.998 0.092 

areaoccupied 0.003 0.000 <0.001 

IBE 16.580 9.649 0.091 

MRE 10.650 6.262 0.094 

NRE -10.660 6.421 0.102 

GLPE 6.671 5.031 0.190 

GRPE 9.815 5.623 0.086 

areaoccupied × IBE -0.003 0.003 0.294 

areaoccupied × MRE -0.001 0.000 0.012 

areaoccupied × NRE 0.000 0.000 0.416 

areaoccupied × GLPE -0.002 0.001 0.034 

areaoccupied × GRPE -0.003 0.001 <0.001 

 



Pack size  

We applied the predictive pack size model (Sect. 1.6) to each iPOM grid cell each year. We used the 
resulting mean and standard deviation estimated for each grid cell in each year to create gamma 
distributions that were spatially and temporally explicit estimates of pack size and its uncertainty. These 
distributions, groupsize-distribution, informed abundance calculations during final steps.  

Abundance estimates 

We estimated numbers of packs and wolves for each year, 2007 – 2019, by combining predictions from 
the 3 models (Fig. 1.18). We calculated results at the state and MFWP regional levels. To do so, we 
calculated mean estimated occupancy (𝜓𝜓�) across iPOM grid cells, then calculated area occupied 
(areaoccupied) as: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  𝜓𝜓� × ∑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
where ∑gridarea was the sum of grid cell areas. We calculated the number of estimated packs as: 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ÷ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
where values for territorysize were drawn with replacement from territorysize-distribution for each iteration of 
the MCMC chain. Values for territorysize were therefore spatially explicit and biologically appropriate to 
the local conditions each year and accounted for uncertainty. We then calculated the number of estimated 
wolves as: 

𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =  𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
where packsize was drawn from groupsize-distribution and lonerate accounted for lone and dispersing wolves. For 
packsize we drew for each iteration of the MCMC chain a random value from groupsize-distribution. This 
provided spatially explicit and biologically appropriate values for local conditions each year while 
incorporating model uncertainty about pack size. We modeled lonerate by drawing for each iteration of the 
MCMC chain values from a normal distribution assuming a mean of 1.125 and standard deviation of 
0.025. This yielded a loner/disperser rate of 12.5% and incorporated variation and uncertainty around this 
rate, as 95% of values drawn were 7.6 – 17.4%. We selected these values based on studies documenting 
that on average, 10 – 15% of wolf populations are comprised of lone or dispersing wolves (Fuller et al. 
2003). This is consistent with Idaho’s calculations for lone wolves (Holyan et al. 2013) and slightly more 
conservative than Minnesota’s calculations, which add 15% (Erb et al. 2018).  

To account for uncertainty and calculate credible intervals (CI’s) for all parameters, we retained posterior 
estimates of 10,000 values for each and calculated the median value and 2.5% and 97.5% values (creating 
95% CI’s) for 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, and 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤. We calculated density of 
packs per 1000 km2, wolves per 1000 km2, and population growth (lambda, λ). We also calculated harvest 
rate as the annual number of wolves harvested divided by 𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤. As with all harvested populations, 
harvest rate would appear somewhat lower if the annual population peak was used in the denominator; 
however, this peak cannot be known without data for all births, deaths, and dispersals.  

We repeated these calculations for MFWP management regions by completing each step described above 
at each subsetted group of grid cells by region. Grid cells were categorized by the region in which the 
majority of their areas fell.  



Results 

Each year (2007 – 2019), 50,026 – 82,375 hunters responded annually to the wolf sighting surveys. From 
their reported sightings, 1,064 – 3,469 locations of 2 – 25 wolves were mapped each year. Percent of 
hunters reporting a wolf sighting ranged from 4.5% (2017) to 7.5% (2011). 

From 2007 – 2019, estimated area occupied by wolf packs in Montana ranged from 38,424 km2 (95% CI 
= 33,041 – 44,642) in 2007 to 77,563 km2 (95% CI = 72,209 – 83,739) in 2012 (Table 1.7). The estimated 
distribution of wolves from the occupancy model closely matched the distribution of field-confirmed wolf 
locations (verified pack locations and harvested wolves; e.g., Fig. 1.7).  

Figure 1.18. The iPOM approach combines 3 separate models to estimate the numbers of packs and wolves in Montana. Statewide 
estimates are shown. 



Estimated territory size varied (Fig. 1.19). Considering grid cells likely occupied by packs (defined as ψ ≥ 
0.5), territory size was estimated to be largest in the Middle Rockies (the MRE, southwest MT) and 
second largest in the Canadian Rockies (the CRE, including Glacier National Park and the Bob Marshall 
Wilderness), followed by the Northern Rockies (the NRE, northwest MT) and the Idaho Batholith (the 
IBE, the Bitterroot area). 
Territory size was greatest in 
2007 and dropped thereafter, 
except in the IBE where 
territory size remained stable.  

Estimated pack size also 
varied (Fig. 1.19). 
Considering only grid cells 
with ψ ≥ 0.5, mean pack size 
was estimated to be similar 
across ecoregions (an 
approximate difference of < 1 
wolf per pack in most years). 
Pack size was estimated to 
generally be slightly larger 
than average in the NRE, 
approximately equal to 
average in the CRE and MRE, 
and slightly smaller than 
average in the IBE. Pack sizes 

Table 1.7. iPOM results, 2007 – 2019. 

Year Area 
Occupied 

LCI Area 
Occupied 

UCI Area 
Occupied Packs LCI 

Packs 
UCI 

Packs Wolves LCI 
Wolves 

UCI 
Wolves 

2007 38424 33041 44642 91 76 107 650 547 771 

2008 49264 43808 55574 118 103 136 845 734 970 

2009 61148 55620 67198 153 136 171 1023 908 1147 

2010 63594 58365 69332 161 145 180 1145 1024 1280 

2011 71594 66458 77392 187 170 206 1254 1136 1383 

2012 77563 72209 83739 205 187 224 1203 1095 1320 

2013 77247 71901 83259 205 187 224 1210 1102 1326 

2014 72244 67074 78056 191 173 210 1132 1026 1250 

2015 74764 69780 80176 200 182 219 1189 1082 1306 

2016 70674 65859 75914 189 172 208 1126 1020 1242 

2017 69374 64824 74526 186 169 205 1113 1005 1227 

2018 71218 66661 76574 193 175 211 1150 1045 1267 

2019 71723 67183 76986 193 176 212 1156 1052 1270 

Figure 1.19. Estimated territory size and pack size in western Montana for cells with ψ ≥ 
0.5 (i.e., having higher likelihood of being occupied). Ribbons indicate 95% credible 
intervals. Dashed line is the overall mean for western Montana. (Eastern Montana 
ecoregions were estimated to have few packs each year and are not shown.) 



were larger in the earlier years (prior to harvest) and have since declined by approximately 1 wolf per 
pack, on average.  

Estimated numbers of packs and wolves varied through time (Fig. 1.20; Table 1.7). The population was 
estimated to have been smallest in the first year of our analysis (2007), with 91 packs (95% CI = 76 – 
107) and 650 wolves (95% CI = 547 – 771). Population growth was positive through 2011 (Fig. 1.21). A
peak in total wolves appears that year, with a high of 187 packs (95% CI = 170 – 206) and 1254 wolves
(95% CI = 1136 – 1383). This 2011 peak coincided with the first years of harvest management in
Montana, after which the population declined by 7.8% in total wolf abundance between 2011 and 2019.

Figure 1.20. Estimated number of packs and wolves statewide, 2007 – 2019. Ribbons indicate 95% credible intervals. 

 

Figure 1.21. Population growth rate varied over time and space. Facets show lambda by MFWP region (regions 1 – 5) and the 
full state (λ > 1.0 = increasing population, < 1.0 = decreasing population. 



λ alternated from slightly >1.0 to 
slightly <1.0 (positive and negative 
growth rates, respectively) during this 
time. From 2016 – 2019, the 
population appears to have become 
somewhat stabilized with an average 
of 190 packs and 1136 wolves per 
year. This was despite a harvest rate 
estimated at >20% per year over this 
same period (Fig. 1.22).  

The estimated numbers of packs and 
wolves varied spatially (Fig. 1.23). 
Pack and wolf abundances were 
consistently greater in MFWP Region 
1 (which contains most of the NRE 
and CRE; Fig. 1.3). Annually from 
2007 – 2019, 37 – 43% of packs in Montana were found in Region 1, which also contained an average of 
41% of the wolf population (Fig. 1.24). The next most populous area was Region 2, with 24 – 26% of 
total packs and 26% of the wolf population. Region 3 contained 19 – 25% of packs and 21% of the wolf 
population. Regions 4 – 7 each contained only ≤ 1 – 9% of packs and 1 – 7% of wolves. As the number of 
packs and wolves changed through time (Fig. 1.23), the proportion of packs and wolves in each region 
stayed relatively consistent, with slight increases in Regions 1 and 4, and slight declines in Regions 3 and 
5 (Fig. 1.24).  

Wolf densities varied over space and time (Fig. 1.25; Appendix A). Densities were estimated to be 
greatest in MFWP Region 1 (ranging 6.41 – 13.30 wolves per 1000 km2 from 2007 – 2019), followed by 
Region 2 (6.62 – 12.44) and Region 3 (3.23 – 5.06). Regions 4 – 7 had ≤ 1.42 wolves per 1000 km2. 
Regions 1 and 2 saw the greatest increase in densities from 2007 through the population peak, with a 

Figure 1.22. Estimated statewide harvest rate, 2007 – 2019. Ribbons indicate 
95% credible intervals.

Figure 1.23. Estimated number of packs and wolves by MFWP region, 2007 – 2019. Ribbons indicate 95% credible intervals. 



smaller change in density in Region 3 and largely consistent densities in Regions 4 – 7. Annual maps of 
pack and wolf densities demonstrate close alignment between known packs, locations of wolf harvests, 
and predictions from iPOM (Appendix A).  

Discussion 

We developed a multi-model approach to estimate wolf abundance in Montana. This approach addresses 
important assumptions of original methods for estimating wolf abundance by incorporating an occupancy 
model (Miller et al. 2013; Rich et al. 2013; Inman et al. 2020) and biologically-based models for territory 
and pack size (Sells et al. in press; 
Sells et al. in review a, b). 
Although monitoring has been a 
central component to Montana’s 
wolf recovery efforts for > 3 
decades, it became increasingly 
challenging as wolf populations 
grew and limitations in staff time 
and funding were reached. In 
contrast, our models for territory 
and group size provided accurate 
estimates with limited data. This 
reduces monitoring needs while 
providing more accurate 
abundance estimates founded on 
biology and behavior of wolves. 
(A recommended monitoring 
program is provided in Section 4.)  

 
Figure 1.24. Proportion of packs estimated per MFWP region and year, and total mean % of wolves per region. (Annual 
% of wolves followed similar trends to that of packs shown in the left panel.) 

Figure 1.25. Wolf densities varied by region and year. Ribbons indicate 95% 
credible intervals.  

 



Statewide estimates of abundance from iPOM were consistently greater than numbers reported from 
monitoring, as expected given that monitoring provided only minimum counts (Fig. 1.26). iPOM 
estimates were likewise greater than previous POM estimates. This was expected because POM assumed 
territory size was consistent over space and time, and this assumption was clearly violated (Sect. 1.3 – 
1.4). POM also incorporated an overlap index in attempt to account for changing spatial dynamics over 
time, but this ad hoc approach was not tested or biologically based and its effects on accuracy were 
unknown. Additionally, POM could not accurately estimate regional abundances due to the lack of 
spatiotemporally-specific estimates of territory and pack size (Fig. 1.27). In contrast, behavioral models 
informed iPOM to incorporate biologically appropriate estimates of territory and pack size at both 
statewide and finer spatial scales.  

The ability to predict abundances at regional scales will enable managers to make decisions using the best 
available estimates for the local population. Regional estimates from iPOM demonstrate large variations 
in pack and wolf abundances across space and time (Figs. 1.23 – 1.25). These estimates align with the 
expectations of MFWP Wolf Specialists familiar with local pack dynamics. They also reveal how many 
packs may have been unverified each year. Generally, only a small number of additional packs were 
estimated to been excluded from verified minimums (Fig. 1.28). The largest differences occurred in 
Region 1 in recent years; this is attributable in part to a change in field personnel (Coltrane et al. 2015). 
This area has also received numerous public comments that the wolf population was higher than the 
annual minimum counts.  

Because population dynamics are in constant flux, pack and wolf abundances will fluctuate through the 
year. Our estimates are thus approximate and expected to be closest to truth in the late fall and early 
winter (when hunter surveys and final monitoring efforts occur). Importantly for management decisions, 
not all estimated packs may have existed through each calendar year due to pack dissolutions or 
extirpations (e.g., arising from mortalities, competition among packs, etc.). Breeder mortalities may 
particularly influence pack dissolution (Brainerd et al. 2008) and these mortalities have likely increased 
under harvest. Large populations such as estimated in Montana in the past decade also likely experience 
intensive competition, which may cause greater pack turnover due to dynamic fluctuations in territory 
mosaics (Sells et al. in review a).  

 
Figure 1.26. Estimated number of packs and wolves from iPOM versus previous POM estimates and minimum counts, 2007 – 
2019. Ribbons indicate 95% credible intervals for iPOM.  

 



Although the estimated area occupied 
doubled from 2007 to 2012, area 
occupied has largely stabilized since 
2012 at slightly lower values from this 
peak. The extent to which this 
stabilization represents a population 
responding to density dependent 
factors versus hunting and trapping is 
uncertain. However, our territory 
model demonstrated that increasing 
levels of competition generally result 
in territory compression as desirable 
areas are competed for and claimed 
(Sect. 1.2 – 1.4). Accordingly, the 
distribution of territories may not 
appreciably change even as territory 
dynamics fluctuate within. Our group 
size model also demonstrated evidence 
of large packs in areas of greater pack 
densities, suggesting less dispersal in 
response (Sect. 1.5). Both features 
point to density dependence, but 
effects of harvest cannot be ruled out, 
particularly given that area occupied 
largely plateaued coincident with 
increased intensity of harvest. It also 
remains likely that human social 
tolerance has prevented the successful 
long-term expansion of wolves into 
central and eastern Montana, as new 
packs are often discovered and may be 
removed through harvest.   

The occupancy model carries 
important assumptions. Grid cells are 
assumed to be independent such that the same wolves do not overlap multiple grid cells, and any 
movement into the cell is assumed to be equal to movement out of the cell. Although individual territories 
do not fall within grid cell boundaries, most territories are smaller than the cell areas (i.e., < 600 km2). 
Furthermore, because the model employs territory centroids to help inform the true and false detections, 
the cell predicted to have the greatest occupancy contains the core of the territory. Future work might 
consider designing a new occupancy model with grid cells that vary in size according to the more 
localized territory size estimates.  

Although hunter surveys could theoretically bias occupancy estimates given sufficient mistaken or 
falsified reports, there is limited evidence this occurs, and it is unlikely to affect results. The false 

 
Figure 1.27. Estimated number of packs and wolves per MFWP region 
from iPOM versus previous POM and minimum counts. Ribbons indicate 
95% credible intervals for iPOM. Based on what is known from minimum 
counts and expert knowledge of MFWP Wolf Specialists, POM appears to 
cause over- and under-counts relatively frequently. (E.g., any estimate < 
minimum counts is clearly underestimated.) 

 

 



positives nature of the model accounts for 
these possibilities. Furthermore, 95% of 
hunters surveyed did not report seeing 
wolves, and suspect reports (e.g., >25 
wolves sighted at one time) are rare and 
automatically omitted. Sightings 
furthermore align strongly with the 
distribution of wolves known from 
monitoring, with exception of sporadic 
reports in eastern Montana. These reports 
neither drive up the estimates of 
occupancy nor affect overall abundance 
estimates in appreciable ways, further 
demonstrating the inability of hunter 
reports to singly drive the estimates of 
abundance.  

The territory and pack size models also 
carry various assumptions (Sects. 1.2 – 
1.6). As with POM, consistent bias in 
estimated territory or pack sizes would 
also bias results. Were territory size 
estimates biased low or pack size 
estimates biased high, the overall 
population would be biased high. Unless 
territory or pack size estimates were 
consistently biased in the same direction across large spatial extents, however, regional- and population-
level biases are likely to partially or fully wash out (as some areas would be slightly overestimated, while 
others were underestimated). iPOM’s incorporation of spatially-explicit estimates for territory and pack 
size therefore has a strong advantage over POM. By assuming a single estimate for territory and pack size 
was accurate each year, POM easily biased estimates if these components were wrongly estimated. 

To account for dispersing and lone wolves, iPOM includes a disperser/loner rate of 12.5% of the 
estimated number of wolves living in packs. This is consistent with POM and scientific literature (Fuller 
et al. 2003), and similar to methods used in other states (Holyan et al. 2013, Erb et al. 2018). In the future, 
models for dispersal and lone wolf rates could be incorporated into iPOM to improve this component. 
Such models would likely require intensive, expensive monitoring (e.g., collaring a high number of young 
wolves to obtain sufficient data during future dispersal). To date, such efforts have been infeasible given 
the difficulty of capture and high mortality and collar failure rates. iPOM can easily incorporate dispersal 
and lone wolf models in the future should they be successfully developed.  

Our iPOM approach is unique among the various approaches taken to monitor wolves and estimate their 
abundance. Like Montana in early phases of recovery, intensive efforts may be employed to monitor as 
many wolves as possible, particularly where wolf populations remain relatively small (e.g., California, 
Oregon, and Washington; wildlife.ca.gov, dfw.state.or.us, wdfw.wa.gov). Many areas rely on models 

 
Figure 1.28. Difference in number of packs from iPOM versus minimum 
counts, 2007 – 2019. Difference of 0 would indicate all packs were 
identified and reported. Ribbons indicate 95% credible intervals. 

 



designed to estimate population parameters from monitoring data. In Finland, e.g., winter track surveys 
are used to estimate the number of litters (Kojola et al. 2014). This estimation technique was effective in 
only some areas and involved intensive effort (over a 2-decade period, 200,000 km of transects surveyed 
primarily by ski to obtain <900 wolf track observations). Scandinavian countries have also used 
individual-based models with highly informative priors to estimate population size (Chapron et al. 2016). 
These priors were uniquely available for one of the most intensively-studied populations of large 
carnivores in the world, and the model assumed all pairs, packs, and reproductions were detected. 
Scandinavia has also used open population spatial capture-recapture models to estimate recent and future 
abundance (Bischof et al. 2020). Such approaches appear highly effective when extensive genetic datasets 
are available. In less well-studied populations, genetic spatial capture-recapture models may be unable to 
produce estimates for some time periods, despite intensive field effort (e.g., as demonstrated for cougars 
in Idaho; Loonam et al. 2020). Loonam et al. (2020) concluded that such models may be most conducive 
in small areas with concentrated field effort. An integrated population model to estimate wolf abundance 
in Idaho was recently developed using an extensive dataset (including 10 years of data with >1300 pack 
counts and nearly 200 GPS collars; Horne et al. 2019). Time- and space-to-event modeling with cameras 
have received great interest in recent years and can effectively estimate abundance and densities of 
populations (Moeller et al. 2018; Loonam et al. 2020). Employing these approaches over large areas 
would be costly and field-intensive, and the approaches are sensitive to camera placement and rely on 
accurate estimates of animal movement speeds. Idaho (Ausband et al. 2014) and Wisconsin (Wiedenhoeft 
et al. 2020; https://dnr. wisconsin.gov/newsroom/release/38041) also use patch occupancy modeling-
based estimation approaches. Neither state has incorporated spatially-explicit, biologically-based models 
for territory and pack size. As demonstrated, integrating these types of models is important for estimating 
population size from estimates of area occupied. 



SECTION 2: ESTIMATION OF RECRUITMENT 

ABSTRACT  Our objective was to develop methods to estimate recruitment in wolf packs in Montana. A 
model for estimating recruitment needed to produce accurate estimates and require less field data. We 
developed and tested an empirical model to estimate the number of pups recruited without recruitment 
data. Recruitment of wolves in Montana varied annually, and was negatively correlated with wolf 
abundance and harvest, and positively correlated with pack size. Future application of the recruitment 
model will require incorporation of the iPOM methodology; however, our model provides the foundation 
for estimating recruitment using collaring and pack count data. 

Introduction 

Recruitment (i.e., number of young produced that survive to an age at which they contribute to the 
population) affects population growth and may be influenced by intrinsic and extrinsic factors. Because 
each breeding pair of wolves produce an average of 4 – 6 pups per year, pups tend to be the largest age 
class in the population (Fuller et al. 2003). The number of non-breeding helpers influences recruitment in 
many species that cooperatively breed, including wolves (Solomon and French 1997; Courchamp et al. 
2002, Stahler et al. 2013, Ausband et al. 2017). Population density may also affect recruitment (Gude et 
al. 2012, Stenglein et al. 2015a). Forest cover may be associated with greater recruitment because it is 
associated with occupancy of wolves (Rich et al. 2013, Bassing et al. 2019) and may serve as security 
cover (Llaneza et al. 2012). Winter severity may also affect recruitment by increasing the vulnerability of 
ungulates to predation by wolves (Huggard 1993, Post et al. 1999, Mech and Peterson 2003). Fluctuations 
in wolf populations have furthermore been linked to winter severity (Peterson 1974, Mech et al. 1998, 
Mech and Fieberg 2015). Harvest both directly and indirectly reduces recruitment, as well (Ausband et al. 
2015, 2017a).   

Estimating recruitment of wolves is difficult. To date, MFWP has documented recruitment using the 
number of breeding pairs (a male and female wolf with at least 2 surviving pups by December 31; U.S. 
Fish and Wildlife Service 1994). A breeding pair estimator (Mitchell et al. 2008) could be used to 
estimate breeding pairs but requires knowing pack size. Recruitment could alternatively be estimated by 
comparing den site counts to winter counts (Mech et al. 1998), marking pups at den sites (Mills et al. 
2008), or using non-invasive genetic sampling (Ausband et al. 2015) at predicted rendezvous sites 
(Ausband et al. 2010). Each of these options are intensive, costly, and bound to be incomplete due to the 
large number of wolves in the population. Accordingly, a new model for estimating recruitment needed to 
produce accurate estimates and require less field data. 

We developed an empirical recruitment model using the framework of an integrated population model. 
Integrated population models can be a useful tool for demographic analyses from limited datasets and can 
increase precision in estimates (Besbeas et al. 2002). These models generally use time-series count data to 
inform changes in abundance over time, mark-recapture data to inform survival, and survey data to 
inform recruitment (Abadi et al. 2010, Schaub and Abadi 2011). With this approach it is possible to 
estimate recruitment with only survival and count data because changes in abundance over time contain 
information on changes in vital rates.  



We adapted the integrated population model to account for the social structure of wolves. Traditional 
integrated population models ignore social structure, which can greatly affect demography (Al-Khafaji et 
al. 2009). A wolf population is a collection of packs and packs are collections of individuals. Within a 
pack, wolves can survive, disperse, or be recruited. Packs can dissolve and new packs can form. The 
processes that occur within a pack (e.g., dispersal) can affect the processes that occur among packs (e.g., 
pack formation). 

We used the model to evaluate how recruitment in wolves varied across Montana. We tested hypotheses 
that variation in recruitment was driven by intrinsic versus extrinsic factors. For intrinsic factors, we 
expected recruitment would 1) increase with pack size given the importance of non-breeding helpers 
(Ausband et al. 2017, Ausband 2018); and 2) decline with population size because conspecific aggression 
can negatively affect survival (Cubaynes et al. 2014). We alternatively hypothesized that extrinsic factors 
drive variation in recruitment. We expected that recruitment would 3) increase with forest cover given its 
association with wolf occupancy and security cover (Llaneza et al. 2012, Rich et al. 2013, Bassing et al. 
2019); 4) increase with prey abundance and winter severity by increasing the vulnerability of ungulates 
(Huggard 1993, Post et al. 1999, Mech and Peterson 2003); 5) decrease with harvest via direct and 
indirect effects on survival (Ausband et al. 2015, 2017a); and 6) decrease with low-use road density given 
the increased access such roads provide to hunters and trappers (Person and Russell 2008). 

Methods 

To account for social structure of wolves, we modeled the processes that occur both within and among 
packs (Fig. 2.1). We used 1) estimates of abundance from POM to inform changes in abundance over 
time, 2) estimates of colonization and extinction from POM to inform group formation and extinction, 3) 
group counts from monitoring to inform changes in pack size over time, 4) GPS and VHF collar data to 
estimate survival, and 5) data from the literature to model dispersal (Jimenez et al. 2017). As our study 
was concurrent with Project 1 (Objective 1), we used POM rather than the new iPOM approach and its 
resulting estimates. We ignored adoption of individuals into the pack because we assumed it was rare. We 
estimated survival using a 
discrete-time proportional 
hazards model with a 
complementary log-log 
(cloglog) link function. We 
used 4 discrete periods for 
survival analyses: the 
denning period (April – 
May), rendezvous period 
(June – August), the 
hunting-only period 
(September – November), 
and the hunting/trapping 
period (December – 
March). GPS and VHF 
collared adult wolves from 
2007 – 2018 provided the 

 
Figure 2.1. The recruitment model accounts for the hierarchy of demography in wolf 
population dynamics. Blue circles represent processes that occur among packs and red circles 
represent processes that occur within packs. 

 



known-fate data to estimate survival. We did not 
include wolves that were removed for livestock 
depredation as these have inherent sampling bias. 
Recruitment was the only parameter without data 
and could therefore be estimated. We modeled 
recruitment as the number of pups per pack using 
generalized linear models with a log link function. 
The linear predictor could then be described using 
covariates to test hypotheses about factors 
influencing recruitment. We included a random 
year effect on survival to account for yearly 
variation. 

We used the recruitment model to estimate and 
evaluate variation in recruitment of wolves in 
Montana. For intrinsic factors, we used pack sizes 
reported by MFWP Wolf Specialists and the 
estimated population size. We retained good and 
moderate quality pack size observations (Inman et al. 2019). For extrinsic factors, we first buffered pack 
centroids by 600 km2, representing the average territory size of wolves assumed under POM (Rich et al. 
2012, 2013). We calculated the proportion of the buffer covered by forest using ArcGIS (ESRI 2011) and 
data from the Gap Analysis Project (Wildlife Spatial Analysis Lab, University of Montana). We also 
classified low-use road density as either 4-wheel-drive or 2-wheel-drive roads in areas with ≤ 25 
people/km2 (Rich et al. 2013, Montana Fish Wildlife and Parks 2018) and calculated road density within 
the buffer. Data for forest cover and road density were from 2013, and we assumed this varied little over 
time. We used winter severity and catch-per-unit-effort (CPUE) of antlered elk as an index of prey 
abundance (Lancia et al. 1996). For winter severity we used the average daily snow depth for the water 
year (October 1 – September 30) from SNOTEL (https://www.wcc.nrcs.usda.gov/snow/). We estimated 
CPUE for elk in each administrative region as the number of harvested antlered elk divided by the 
number of hunter days using harvest statistics from MFWP (fwp.mt.gov). Harvest was a binary variable 
(1 in years with harvest and 0 in years without harvest). 

Two candidate models represented the intrinsic hypothesis, and 4 candidate models represented the 
extrinsic hypothesis (Table 2.1). Each model also included a random effect of year to account for 
temporal variation. We used Markov chain Monte Carlo (MCMC; Brooks 2003) methods in a Bayesian 
framework to fit the model using program R 3.4.1 (R Core Team 2020) and package R2Jags (Su and 
Yajima 2015) that calls on program JAGS 4.2.0 (Plummer 2003). We ran 3 chains for 300,000 iterations, 
discarded the first 50,000 iterations as a burn-in period, and used a thinning rate of 3. We ran an 
additional 100,000 iterations until convergence was reached or a maximum of 500,000 additional 
iterations. We monitored convergence using visual inspection of the MCMC chains and the Gelman-
Rubin diagnostic (Gelman and Rubin 1992). Model selection was based on posterior deviance. All results 
are presented with mean and 95% credible intervals unless otherwise specified.  

 

Table 2.1. Model selection results and # of parameters (K) from 
integrated population models to estimate wolf recruitment from 
2007-2018. Lower deviance suggests more model support, and 
we considered those within a standard deviation (SD) of the top 
model to have support. Explanatory variables included intrinsic 
factors (population and pack size) and extrinsic factors related to 
risk of mortality (harvest, forest cover, 4WD and 2WD road 
density) or prey availability (average daily snow depth and elk 
catch-per-unit-effort). 

Model  K Deviance SD 

𝛾𝛾 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜀𝜀𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 3 998 300.7 

𝛾𝛾 ~ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻+ 𝜀𝜀𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 3 1000 313.3 

𝛾𝛾 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜀𝜀𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 3 1200 433.3 

𝛾𝛾 ~ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+ 𝜀𝜀𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 3 1484 314.2 

𝛾𝛾 ~ 4𝑊𝑊𝑊𝑊+ 2𝑊𝑊𝑊𝑊+ 𝜀𝜀𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 4 1964 309.1 

𝛾𝛾 ~ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+ 𝐸𝐸𝐸𝐸𝐸𝐸+ 𝜀𝜀𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌a 4 2013.9 384.4 

a Failed to converge; coefficient values not included in results.  
 



Results 

From 2007 – 2018, 163 adult 
wolves were collared (95 
females and 68 males, 19 – 
47 collars per year). Of these 
wolves, 81 had an unknown 
fate and were censored the 
period of their last known 
location. Mortality sources 
for the remaining 82 wolves 
included legal harvest 
(n=31), control removals (n=21), poaching (n=9), other human-caused mortality (e.g., vehicle collision or 
livestock conflicts; n=3), non-human mortality (e.g., natural mortality or conspecific aggression; n=6), 
and unknown cause of mortality (n=7).  

We excluded 358 group count observations (24.8%) classified as poor quality. The final dataset included 
816 observations from 2007 – 2018. The mean observations per year was 68 (SD=21.8, range 27 – 102). 
On average, each pack had 4.5 observations (SD=2.48).  

The model with the lowest mean deviance included a density-dependent effect on recruitment (Table 2.1). 
There was a 0.97 probability of a negative correlation between population size and recruitment rate to 17 
months (Table 2.2). There was a 2.5% (0 – 5.92%) decline in recruitment with a 10% increase in 

 

Figure 2.2. Estimates of recruitment rate (A, B; mean # of pups per pack) and total # of pups recruited (C, D) for wolves in 
Montana to 5 (A, C) and 17 months of age (B, D). Line widths represent the 66% and 95% CRI. Shaded areas represent years in 
which wolves were protected under the Endangered Species Act and not harvested.  

Table 2.2. Mean coefficient estimates (95% CRI) of covariate effects on recruitment to 5 
and 17 months of age for wolves in Montana (2007-2018). 

Coefficient 5 months Pr 17 months Pr 

Harvest 0.06 (-0.309 – 0.464) 0.62 -0.48 (-1.490 – 0.098) 0.91 

2WD road density -0.07 (-0.287 – 0.141) 0.70 0.01 (-0.747 – 0.356) 0.67 

4WD road density 0.01 (-0.086 – 0.098) 0.65 -0.26 (-0.778 – 0.038) 0.95 

Forest cover 0.10 (-0.076 – 0.227) 0.92 -0.41 (-0.709 – -0.055) 0.98 

Abundance 0.001 (-0.002 – 0.001) 0.68 -0.003 (-0.006 – 0.000) 0.97 

Pack size 0.06 (0.043 – 0.072) 1.00 -0.02 (-0.644 – 0.516) 0.48 

 



population size. The effect of 
population size on recruitment 
rate to 5 months was positive, 
however this relationship was 
uncertain (Table 2.2). Two 
competing models within the 
standard deviation of the top 
model included 1) harvest and 2) 
pack size (Table 2.1). We found a 
0.91 probability that harvest was 
correlated with decreased 
recruitment to 17 months. 
Recruitment decreased by 49% 
(149% decrease – 9.8% increase) 
in years with harvest (Table 2.2). 
The correlation between harvest 
and recruitment to 5 months of age was positive; however, the relationship was uncertain. Pack size had a 
positive effect on recruitment to 5 months of age. For each additional wolf added to the pack, recruitment 
rate to 5 months of age increased by 6% (4.4 – 7.5%). The relationship between recruitment rate to 17 
months and pack size was uncertain.  

Recruitment rate of pups to 5 months of age and to 17 months of age varied little across years. Mean 
recruitment rate to 5 months of age ranged from 3.25 (2.32 – 4.13) to 4.21 (3.28 – 5.26) wolves per pack 
whereas mean recruitment rate to 17 months of age ranged from 1.40 (0.57 – 2.15) to 3.06 (1.70 – 4.63; 
Fig. 2.2) wolves per pack. During years without harvest, mean recruitment rate to 5 and 17 months of age 
was 3.86 (2.92 – 4.82) and 2.57 (2.14 – 3.48) wolves per pack, respectively. During years with harvest, 
however, mean recruitment rate to 5 and 17 months of age was 3.80 (3.14 – 4.55) and 1.51 (0.76 – 2.13) 
wolves per pack, respectively. Mean annual total number of pups recruited to 5 and 17 months was 516 
(389 – 653) and 229 (103 – 347), respectively (Fig. 2.2).  

Adult survival rates varied annually, and were greatest during years without harvest (0.70, 0.585 – 0.814) 
than years with harvest (0.50, 0.434 – 0.555; Fig. 2.3). The biological period with the greatest survival 
rate, based on non-overlapping CRIs, was the denning period (April – May; 0.99, 0.972 – 0.998) and 
rendezvous period (June – August; 0.91, 0.868 – 0.947), whereas survival for the hunting-only period 
(September – November; 0.78, 0.745 – 0.807) and the hunting and trapping period (December – March; 
0.77, 0.701 – 0.833) were similar. The greatest difference in survival by period during years with and 
without harvest, based on non-overlapping CRIs, was during the hunting and trapping period. Survival 
during the hunting and trapping period for years with harvest was 0.74 (0.660 – 0.814) compared to 0.86 
(0.786 – 0.919) during years without harvest.  

Discussion 

Using available data from monitoring of wolves in Montana from 2007 – 2018, we found that recruitment 
was primarily affected by intrinsic factors. Both abundance and pack size appeared to affect recruitment, 
suggesting density dependent effects of population size and pack size; however, these processes had 

 
Figure 2.3. Estimates of annual survival rate and 66% and 95% credible intervals of 
adult wolves. Shaded areas represent years in which wolves were protected under the 
Endangered Species Act and not harvested.  



opposite effects. Abundance had a negative correlation with recruitment to 17 months of age, suggesting a 
negative density dependent effect. Pack size had a positive correlation with recruitment of pups to 5 
months of age and indicates positive density dependence within a pack.  

The evidence that recruitment to 17 months is density dependent suggests that wolves may have saturated 
available habitat (Oakleaf et al. 2006) and reached some carrying capacity, whether biological or social 
(i.e., human tolerance; Murray et al. 2010). Density dependence in recruitment could be due to decreasing 
per capita food availability affecting pup survival, litter size, or both (Boertje and Stephenson 1992, 
Sidorovich et al. 2007). We found no support for a negative effect of abundance on recruitment to 5 
months of age (Table 2.2), suggesting that density dependence may not influence litter size or neonatal 
pup survival in our study. This suggests that food availability, at least through September, may not be 
limiting. Instead, as the population grew and prime habitat became saturated, wolves may have expanded 
into marginal habitat with more human activity, potentially resulting in density dependence in survival 
and recruitment to 17 months (Fig. 2.2). Gude et al (2012) and Stenglein et al. (2015a) also found 
negative density dependence in recruitment of wolves in the Northern Rockies and Wisconsin, 
respectively.  

The evidence that presence of non-breeding helpers increases recruitment to 5 months (i.e., positive 
density dependence with pack size) corroborates findings of increased survival and recruitment of pups 
with increasing pack size in wolves (Ausband et al. 2017) and other species that cooperatively breed 
(Koenig 1995, Solomon and French 1997, Courchamp and Macdonald 2001, Courchamp et al. 2002). By 
helping guard and provision pups (Ausband et al. 2016), non-breeders may increase pup survival and 
recruitment. Alternatively, the increase in recruitment with group size could be due to increased 
production of pups instead of survival. Typically, only the breeding pair reproduces, but increases in both 
pack size and abundance are positively correlated with multiple breeding females in a pack (Ausband 
2018). Therefore, increased recruitment in larger packs could be a result of multiple breeding females and 
larger litter sizes per pack.  

Our results suggest that the benefit of larger packs for recruitment to 5 months did not translate to higher 
recruitment to 17 months. After 5 months of age, pups begin moving with the pack and are less dependent 
on care from adults (Fuller et al. 2003, Mech and Boitani 2003). Additionally, harvest mortality occurs 
after pups are 5 months old, and any increase in recruitment to 5 months old in larger packs may be 
negated by harvest mortality.  

Although we did not find evidence of negative density dependence within groups, we only tested for a 
monotonic relationship, and both positive and negative density dependence may occur (Creel and Creel 
1995, Bateman et al. 2012, Stenglein et al. 2015a). There could be a threshold beyond which increasing 
pack size results in decreased recruitment. In African wild dogs (Lycaon pictus), the per capita food 
intake adjusted for costs was greatest at intermediate pack sizes (Creel and Creel 1995), and less food 
available per individual could negatively affect recruitment of offspring.  

We found support for our hypothesis that harvest negatively affected recruitment. The probability that 
harvest reduced 17-month recruitment was 0.91, but this relationship was uncertain (95% credible 
intervals contained zero). Uncertainty in the estimated coefficient for harvest is also likely an artifact of 
our binary variable for harvest (i.e., years with and without harvest). Recruitment rate to 17 months 



included survival through the harvest season, therefore we could not account for variation in harvest rate. 
Harvest rates varied annually and spatially. We attempted to account for spatial variation in risk of 
harvest using increased road density as an index to increased risk. Roads provide easy access for hunters 
and have been correlated with increased risk of mortality (Person and Russell 2008, Stenglein et al. 
2015b). Our results suggest that this increased risk of mortality also translated to reduced recruitment, 
however the negative correlation between 4-wheel-drive road density and recruitment to 17 months was 
uncertain (Table 2.2). Like Horne et al. (2019), we did not find an effect of harvest on recruitment to 5 
months. This was unsurprising as recruitment to 5 months precedes the harvest season. 

Our estimates of recruitment and survival were comparable to other studies for wolves. Recruitment 
estimates for wolves in Idaho averaged 3.2 and 1.6 pups per pack to 15 months without harvest and with 
harvest, respectively (Ausband et al. 2015). Our estimates of recruitment to 17 months of age were similar 
(2.57 and 1.51, without and with harvest). Recruitment of wolves in Idaho to 6 months was 4 (3.5 to 4.6) 
pups per pack, similar to our estimates of recruitment to 5 months during years with and without harvest 
(3.80 versus 3.86 pups per pack). Survival rate for wolves in the Northern Rockies prior to harvest 
implementation averaged 0.75 (Smith et al. 2010), slightly greater than we estimated during years without 
harvest (0.70, Fig. 2.3). Similarly, survival rate for wolves in an unharvested population in Wisconsin was 
0.76 (Stenglein et al. 2015a). Survival rates for wolves in harvested populations in Yukon and Alaska 
averaged 0.56 and 0.59, respectively (Ballard et al. 1987, Hayes and Harestad 2000), similar to our 
estimates for Montana during years with harvest (0.50, Fig. 2.3). The greatest decline in survival was 
during the hunting and trapping period in years with harvest, suggesting that harvest has decreased 
survival in adult wolves in Montana; however, we did not explicitly test this.  

Various model assumptions may have affected estimates of recruitment. We assumed that dispersal was 
constant across packs and consistent with past research. Wolves appear to disperse in response to 
competition for food resources and mating opportunities (Mech and Boitani 2003). Density dependence in 
dispersal with group size has also been observed in wolves (Hayes and Harestad 2000) and other group 
living species (Bateman et al. 2018, Woodroffe et al. 2019). Mean dispersal greater than we assumed 
would likely bias our recruitment estimates low, whereas mean dispersal less than we assumed would 
likely bias estimates high. We also omitted adoption of unrelated individuals into packs and assumed this 
did not affect pack dynamics; if untrue, our estimates of recruitment could be biased high. Adoption of 
non-breeding adults may be infrequent (Bassing 2017), however most male breeder vacancies in Idaho 
are filled by non-related males (Ausband et al. 2017). Because we assumed estimates of recruitment were 
predominately a result of pup production and survival, immigration into packs would also be included in 
those estimates, which would bias results. We also did not account for or evaluate the effects of disease 
(e.g., canine parvovirus, distemper, Mech and Goyal 1995, Mech et al. 2008), which can cause declines in 
pup recruitment and contribute to spatial and temporal variation in recruitment rate (Almberg et al. 2009). 

Our estimates have the potential to be biased given that we omitted collared wolves killed via control 
actions because they represented a non-random sample. During this study, 10% (SD = 4.2%) of wolves 
were removed for control actions annually, and relatively more were removed during years without 
harvest (15%, SD = 2.1%) than during years with harvest (7%, SD = 1.8%). Therefore, our estimates of 
survival may be biased high, and, consequently, our estimates of recruitment may be biased low. This is 
likely a small effect because only 35% of packs had a control removal, and only 25% of packs had a 



control removal during years with harvest. Additionally, we accounted for control removals by 
subtracting wolves removed from group count data in our model.  

We used POM estimates of abundance, the number of packs, and pack growth rate (Inman et al. 2019). 
These estimates rely on assumptions of a constant average territory size and may be biased (Sect. 1). 
Future application of the recruitment model will necessitate integrating iPOM (Sect. 1.7) into the 
recruitment model structure. 



SECTION 3: ADAPTIVE HARVEST MANAGEMENT FRAMEWORK 

ABSTRACT:  Management of large carnivore populations with harvest is contentious. Adaptive 
management incorporates scientific information and associated uncertainty in a transparent process that 
relates alternative management actions to explicit, quantifiable objectives to guide decision making. 
Through monitoring, uncertainty can be reduced over time to improve future decisions. Our objective was 
to conceptualize a decision tool for wolf management. We demonstrate how an AM framework explicitly 
incorporating uncertainty in estimates of harvest, biological and sociopolitical values, and quantitative 
objectives could guide decisions of harvest regulations of wolves.  

Introduction 

Balancing viable large carnivore populations with stakeholder needs is often challenging. Predation on 
livestock and competition for ungulates are a main source of conflict (Muhly and Musiani 2009, Laporte 
et al. 2010, Macdonald and Loveridge 2010, Treves et al. 2013). Livestock losses and non-lethal effects 
of carnivores on livestock have negative socioeconomic impacts (Muhly and Musiani 2009, Laporte et al. 
2010), and disproportionately affect rural communities. Hunters may have concerns that carnivores will 
negatively affect ungulate populations and reduce opportunities for hunting (Ericsson and Heberlein 
2003). Conversely, large carnivores can generate interest and revenues due to ecotourism (Tortato et al. 
2017) or positive attitudes due to perceived ecosystem services and their role in wildlife communities 
(Ritchie et al. 2012, Treves et al. 2013).  

Management of wolves in Montana is subject to many similar challenges. The Montana Wolf 
Conservation Strategy (MFWP 2002) requires a minimum of 15 breeding pairs (a male and female wolf 
with ≥ 2 pups that survive until December 31) and 150 wolves to have a regulated, public harvest season. 
Harvest has accordingly occurred since delisting in 2011; however, harvest decisions are challenging due 
to conflicting values and objectives from stakeholders, which include federal and state agencies, hunters, 
the general public, wildlife enthusiasts, and livestock producers. Surveys have shown that many 
Montanans feel that wolves negatively affect the economy, likely due to livestock losses and the 
perceived or realized loss of hunting revenues from decreased elk populations (Berry et al. 2016). Private 
landowners and ungulate hunters have more positive opinions and tolerance for wolf hunting and trapping 
(Lewis et al. 2012, 2018, Berry et al. 2016). Conversely, some Montanans feel wolves positively affect 
tourism (Berry et al. 2016), and visitors to Yellowstone consider wolves to be a top species to view 
(Duffield et al. 2006). Respondents to a general household survey of Montanans tended to agree that 
wolves help maintain balance in nature (Lewis et al. 2018), and a slightly greater percentage of 
Montanans had a positive opinion of wolves on the landscape than not (Berry et al. 2016 Lewis et al. 
2018), though this was not true of private landowners or hunting license holders (Lewis et al. 2018).  

Management of wolves through harvest is also challenging because managers cannot directly control 
harvest rates. Changes in harvest regulations do not necessarily change harvest rates (Bischof et al. 2012). 
Harvest rates can vary based on many factors, including weather, regulations, hunter and trapper effort 
and success, and prey availability (Kapfer and Potts 2012).  

There is no consensus for how harvest affects wolves (Fuller et al. 2003, Adams et al. 2008, Creel and 
Rotella 2010, Gude et al. 2012). Harvest appears to be mostly an additive source of mortality for yearlings 



and adults (Creel and Rotella 2010, Murray et al. 2010, Horne et al. 2019) and to reduce pup survival and 
recruitment (Ausband et al. 2015, 2017). However, wolf abundance has remained relatively stationary 
despite harvest rates estimated at 0.17 to 0.36 (Inman et al. 2019). This may be due to increased 
immigration into Montana or decreased dispersal (i.e., positive net immigration). Immigration and 
dispersal can be important processes in dynamics of wolf populations (Hayes and Harestad 2000, Fuller et 
al. 2003, Adams et al. 2008, Bassing 2017). It is unclear, however, whether net immigration occurs in 
Montana and if so, how it affects wolf population dynamics. 

Structured decision making (SDM) can help managers address the conflicting objectives surrounding 
management of wolves. This value-focused approach provides a transparent process to relate objectives of 
management to alternative actions while accounting for uncertainty (Gregory and Keeney 2002, Gregory 
and Long 2009). MFWP developed objectives for wolf management in Montana during an SDM 
workshop in 2010 (Runge et al. 2013) and has used the objectives to guide management since then.  

Adaptive management (AM) is a special case of SDM when decisions are iterated over time or space and 
outcomes uncertain. Because decisions are iterated, AM can be used to learn and reduce uncertainty to 
improve future decisions (Fig. 3.1). AM entails clearly defined objectives, alternative management 
actions, models to predict outcomes of actions, evaluation of tradeoffs, and a monitoring program to learn 
over time (Williams et al. 2009). Objectives help determine whether management was successful 
(McGowan et al. 2011, Conroy and Peterson 2013). Management actions are alternatives available to help 
meet objectives. Models are used to predict consequences or outcomes of different management actions. 
When there is uncertainty in how the system (e.g., population) functions, multiple models can represent 
competing hypotheses. These competing models each have a corresponding model weight, representing 
the support or confidence in each model. The decision model is then solved to select the management 
action that best meets objectives. After management is implemented, the change in system state is 
estimated via monitoring. Comparison of model predictions to monitoring data provides support for some 
models over others. When time to make a new decision, the new model weights and population size are 
incorporated to determine the optimal management action.  

Given the multiple, conflicting objectives of 
wolf management, a decision model could 
evaluate how well different management 
actions (i.e., harvest regulations) meet 
objectives for wolf management. Our objective 
was to conceptualize a flexible decision tool 
for wolf management.  

Methods 

We developed a prototype AM framework to 
demonstrate how such an approach could 
guide decisions regarding harvest regulations 
for wolves in Montana (Keever 2020). Using 
objectives from a 2010 SDM workshop, we 
simulated AM. We used population models to 

 

Figure 3.1. The adaptive management framework.  

 



describe changes in abundance and formalized relationships between population size of wolves, 
recruitment, depredation events, impacts of wolves on ungulates, and the harvest regulations and 
management objectives. We considered alternative models of population dynamics, whereby Model 1 
assumed net immigration of wolves into Montana was 0 and not partially compensating for harvest, and 
Model 2 assumed net immigration was positive and partially compensating for harvest. We used estimates 
from the literature to estimate livestock depredation events from wolf abundance (DeCesare et al. 2018) 
and public acceptance of wolf harvest (Lewis et al. 2012, 2018). We used stochastic dynamic programing 
(SDP; Bellman 1957, Williams et al. 2002), to determine optimal sequences of harvest regulation 
decisions.  

Objectives and utility functions 

We used the objectives previously deemed critical to the decision, as defined during the 2010 SDM 
workshop (Runge et al. 2013):  

1) Reduce wolf impacts on ungulate (i.e., elk and deer) populations. 
2) Reduce wolf impacts on livestock.  
3) Maintain hunter opportunity for ungulates.  
4) Maintain a viable and connected wolf population in Montana. 
5) Maintain hunter opportunity for wolves. 
6) Increase broad public acceptance of harvest and hunter opportunity as part of wolf conservation. 
7) Maintain positive and effective working relationships with livestock producers, hunters, and other 

stakeholders. 

A reward (or objective) function helps determine how well a management action meets multiple 
objectives (Conroy and Peterson 2013). We converted the values of each objective into a common scale 
using utilities that ranged 0 (worst) – 1 (best). We then combined the utility values into a single value that 
included the weights (relative importance) of each objective. We elicited utility functions and weights for 
objectives from MFWP representatives. We also determined their risk attitudes as either risk adverse, risk 
neutral, or risk tolerant. For the reward function, we combined utility values:   

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑤𝑤𝑖𝑖𝑈𝑈𝑖𝑖 +⋯𝑤𝑤𝐼𝐼𝑈𝑈𝐼𝐼 
where 𝑤𝑤𝑖𝑖 is the weight and 𝑈𝑈𝑖𝑖 the utility value for objective i (Conroy and Peterson 2013). Weights for 
objectives were averaged from the responses by MFWP representatives (Table 3.1). We described the 
metrics, utility functions, and risk attitude for each objective below.  

Reduce Impacts of Wolves on Ungulate Populations.— We measured the impact of wolves on ungulates 
using a scale from 0 (no impact) to 1 (wolves are reducing ungulate populations). Wolf impacts on 
ungulate populations in Montana vary greatly, even over short distances, for several reasons (Garrott et al. 
2005, Hamlin et al. 2008). For simplicity, we assumed that the impact of wolves on ungulates was only a 



function of the statewide number of wolves. For application of this decision framework and tool, further 
work would be required to refine the spatial scale for decision-making related to this objective, refine the 
spatial scale for predicting wolf impacts on ungulate populations, or to translate statewide wolf population 
size to cumulative impacts on local ungulate herds. We assumed if there were no wolves, then there was 
no impact on ungulates (utility value of 1), and that an increase in the wolf population was associated 
with a greater impact on ungulates and lower utility values. We used a combination of value elicitation 
and function elicitation (Conroy and Peterson 2013) to determine the relationship between wolf 
population size and the impact on ungulates. The most frequently selected risk attitude was risk tolerant.   

Reduce Impacts of Wolves on Livestock.— We measured wolf impacts on livestock (i.e., cattle and sheep) 
as number of depredation events. We estimated the events per year using the mean and variance of per-
wolf depredation rates before and after harvest (DeCesare et al. 2018), multiplied by the statewide wolf 
population size. The frequency and number of 
wolf depredations on livestock are highly 
concentrated in certain areas within Montana 
(DeCesare et al. 2018), and the statewide per-
wolf depredation rate masks this variation. To 
apply this decision framework, more work 
would be needed to refine the spatial scale for 
decision-making, refine the spatial scale for 
predicting the number of depredations, or to 
translate the statewide per-wolf depredation rate 
to depredation impacts in specific areas. We 
assumed that 0 depredation events had a utility 
value of 1 and an increase in the number of 
depredation events was associated with smaller 
utility values. MFWP representatives selected a 
risk tolerant attitude.  

Maintain Hunter Opportunity for Ungulates.— 
We assumed the main effect of wolves on 
ungulate hunter opportunity was through an 
impact on ungulate populations. Wolves likely 

Table 3.1. Objectives, measurable attributes, and objective weights (relative importance) for an adaptive management 
framework for gray wolves in Montana. Objectives were developed in 2010 as part of a structured decision making 
workshop (Runge et al. 2013) and weights were assigned by MFWP representatives which included supervisors, wildlife 
managers, and wolf specialists.  

Objective Measurable Attribute Weight 
Reduce wolf impacts on big game populations Scale: 0 (no impact) – 1 (reducing populations) 0.246 
Reduce wolf impacts on livestock # depredation events/year 0.205 
Maintain viable and connected wolf population # wolves and pups recruited 0.255 
Maintain hunter opportunity for wolves # wolves, season length, bag limit 0.183 
Increase acceptance of wolf harvest and opportunity Percent Montanans satisfied with regulations 0.111 

 

 

Figure 3.2. Utility functions representing the relationship between A) 
wolf population size and the utility for reducing impacts of wolves on 
ungulates, and B) the # of depredation events and the utility for 
reducing impacts of wolves on livestock.  

 

 



had little effect on other factors 
associated with maintaining hunter 
opportunity for ungulates, such as 
public access, and would likely not 
be influenced by decisions for wolf 
harvest regulations. Therefore, we 
assumed that reducing impacts of 
wolves on ungulates would maintain 
sufficient hunter opportunity.  

Maintain Viable Wolf Population.— 
We measured maintaining a viable 
and connected wolf population by 
the number of wolves and pups 
recruited. We assumed that 
recruitment of < 150 wolves or 30 
pups yielded 0 utility (i.e., a penalty 
function), and utility increased with 
increasing recruitment. We combined 
utilities by taking their product (Fig. 
3.3). MFWP representatives were 
risk averse for abundance and risk 
neutral for recruitment.  

Maintain Hunter Opportunity for 
Wolves.— We used the abundance 
of wolves, bag limit, and hunting 
and trapping season lengths as a 
metric for hunter opportunity for 
wolves. We assumed wolf numbers 
or recruitment rates below the 
required minimum yielded no 
hunter opportunity and a utility 
value of 0, whereas an increase in 
wolf abundance increased hunter 
opportunity (Fig. 3.4). MFWP 
representatives were risk tolerant 
and risk neutral for bag limit and 
season length, respectively. We 
multiplied utility values for 
abundance, bag limit, and season 
length together.  

Increase Public Acceptance of Wolf 
Harvest.— We considered the 

 

Figure 3.4. Utility functions representing the relationship between A) wolf 
population size, B) season length, and C) bag limit and the utility for maintaining 
hunting opportunity for wolves.  

 

 

Figure 3.3. Utility functions representing the relationship between A) wolf 
population size and the utility for maintaining a viable wolf population, and B) 
the # of pups recruited and the utility for maintaining a viable wolf population.  

 

 



percentage of Montanans satisfied with season length and bag limit as the metric for acceptance of wolf 
harvest. We used survey data to predict satisfaction (Lewis et al. 2012, 2018). Survey data were 
categorized as resident private landowners, resident wolf hunting license holders, resident deer/elk license 
holders, and general household. We developed utility functions for satisfaction with hunting season 
length, trapping season length, and bag limit separately for the 4 stakeholder groups. Survey data included 
the percent of respondents that thought the season or bag limit was too short/low (suggesting they would 
be more satisfied with a longer/greater season or bag limit and thus a positive relationship with season 
length or bag limit), and the percent that thought season or bag limit was too long/high (suggesting they 
would be more satisfied with a shorter/smaller season or bag limit and thus a decreasing line). We used 
these relationships to convert satisfaction into utility values for each respondent group. We assumed that 
if 0% of Montanans were satisfied with the regulations, the utility value was 0, and an increase in the 
percent satisfaction was associated with an increase in utility values. MFWP representatives were risk 
neutral.  

For each regulation and stakeholder group, we combined utility values using the negative squared-error 
loss function (Williams and Kendall 2017). This balanced competing interests of respondents, as utility 
values increased with increasingly similar percentages of Montanans who thought the season was too long 
versus too short. We combined the utility values of the 4 survey groups for each regulation type using the 
weighted sum method with equal weights for each group. To combine the three regulation types into a 
final utility value for the objective (𝑈𝑈𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃), we used a weighted sum with equal weights (Fig. 3.5): 

𝑈𝑈𝑟𝑟,𝑔𝑔 = −�𝑈𝑈. 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟,𝑔𝑔 − 𝑈𝑈. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟,𝑔𝑔�
2
 

𝑈𝑈𝑟𝑟 = 0.25 ∗ �𝑈𝑈𝑟𝑟,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑈𝑈𝑟𝑟,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑈𝑈𝑟𝑟,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑈𝑈𝑟𝑟,ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜� 
𝑈𝑈𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0.33 ∗ �𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑈𝑈ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� 

 
Figure 3.5. Utility functions representing the relationship between B) hunting season length, C) trapping season length, and D) 
bag limit and the utility for increasing acceptance of harvest and hunting opportunity for wolves. Figure A demonstrates how 
utility functions were created from the percent Montanans that thought the season was too long or too short.  



where 𝑈𝑈. 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑈𝑈. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 were the utility values for the percentage of respondents who said the season 
or bag limit was too short/low or too long/high, respectively. 𝑈𝑈 was the utility value for hunting 
regulation 𝑟𝑟 (bag limit, hunting season length, trapping season length) and survey group 𝑔𝑔 (landowner, 
wolf license holder, deer/elk license holder, household).   

Maintain Positive Working Relationships.— We did not consider a utility function for maintaining 
positive working relationships with stakeholders as we assumed that increasing acceptance of wolf 
harvest would also increase positive relationships with stakeholders. Maintaining positive working 
relationships may also require management actions beyond harvest regulations (e.g., public outreach).  

Management actions 

We considered 4 management actions consisting of different bag limits, hunting season lengths, and 
trapping season lengths: 

1) No harvest: if the population fell below established minimums.  
2) Restricted: bag limit of 1 (wolves/year), 2 weeks archery, 2 weeks firearm, 4 weeks trapping. 
3) Status quo: bag limit of 5, 2 weeks archery, 26 weeks firearm, 11 weeks trapping.  
4) Liberal: bag limit of 10, 2 weeks archery, 38 weeks firearm, 17 weeks trapping. 

Actions 2 and 4 were created from the average responses of MFWP representatives for restricted and 
liberal management actions.  

We predicted wolf harvest for each license-year (Keever 2020). We fitted negative binomial mixed-
effects models of the relationship between number of wolves harvested and harvest regulations, social 
factors (e.g., hunting and trapping effort), and ecological factors (e.g., winter severity or wolf density). 
The top models for hunting included season length, method (archery or firearm), and type of season (i.e., 
archery, general, trapping, post-trapping). The top model for trapping was a function of trapping season 
length. We used the mean and standard deviation (SD) of the posterior predictive distribution in a normal 
distribution to draw values of the total wolves harvested for each year for each management action.  

Models of population dynamics 

We developed 2 per capita population models to estimate future population size and calculate the 
probability of transition from one system state to any other, given an action. We predicted future 
population size for the following year (i.e., annual time-step) as:  

𝑁𝑁.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁𝑡𝑡−1,𝜙𝜙𝑡𝑡−1) 
𝑁𝑁.𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑁𝑁𝑡𝑡−1𝜌𝜌𝑡𝑡−1) 
𝑁𝑁𝑡𝑡 = 𝑁𝑁.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 +𝑁𝑁.𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 − 𝐻𝐻𝑡𝑡 , 

where 𝜙𝜙𝑡𝑡  was annual survival, 𝜌𝜌𝑡𝑡 was per capita recruitment, 𝑁𝑁𝑡𝑡 was population size, and 𝐻𝐻𝑡𝑡  was number 
of wolves harvested. We did not include age or sex structure because monitoring data could not 
distinguish between sexes and age classes. We assumed yearlings and adults of both sexes had equal 
survival, and that harvest mortality was additive. In Model 1, we assumed that net immigration into 
Montana was 0. For Model 2 representing the hypothesis that net immigration was positive, we included a 
term for net immigration (𝛿𝛿𝑡𝑡), and adjusted the above equation for adults to: 

𝑁𝑁. 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑁𝑁𝑡𝑡−1 ∗ (1 + 𝛿𝛿𝑡𝑡−1)) 
𝑁𝑁.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁. 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 ,𝜙𝜙𝑡𝑡−1). 



We used estimates of survival and recruitment for wolves in Montana to parameterize the population 
models (Keever 2020, Smith et al. 2010). Because we assumed additive harvest mortality, we used the 
mean and variance of non-harvest survival rates (mean = 0.73, variance = 0.003). We included 
stochasticity in survival by drawing random values from a beta distribution based on the mean and 
variance. For recruitment rate, we included density dependence (Keever 2020). We used a maximum 
recruitment rate of 0.05 and a slope coefficient for the effect of density of -0.00114 in a generalized linear 
model with a log-link function as:  

𝜌𝜌𝑡𝑡 = exp (0.05 − 0.00114 × 𝑁𝑁𝑡𝑡−1) 
We included stochasticity in recruitment by drawing random values for the intercept and slope coefficient 
from a gamma distribution based on the mean and variance. We assumed a mean of 0.10 and a variance 
of 0.005 for net immigration and drew random values from a beta distribution to incorporate stochasticity. 
We included partial controllability in harvest by drawing the annual total number of wolves harvested 
from the posterior predictive distribution described above.     

To estimate the probability of transitioning from one population state to another given a management 
action, we initiated the population size randomly within each discretized population state for 50,000 
iterations. We used the 2 population models and their respective model weights to predict abundance the 
next year. We discretized population size by rounding to the nearest 10 wolves and used the frequencies 
of predicted population size to create state transition matrices. We derived probability mass functions 
describing the probability of transitioning from one system state to another. We discretized model weights 
in increments of 0.1, from 0.1 to 0.9. This yielded 10,000,000 simulations (200 population states × 50,000 
iterations) for each of the 4 harvest management actions under each model weight state. 

Optimization and simulation 

We used SDP to compute the optimal set of management actions (Bellman 1957, Williams et al. 2002, 
Puterman 2014). We solved the problem by maximizing the expected cumulative reward value over the 
infinite time horizon using policy iteration in R v3.6.1 (R Core Team 2020) with package MDPtoolbox 
(Chadès et al. 2017). We assumed a discount factor close to 1 (i.e., 0.99999; Puterman 2014), indicating 
the value of a resource in the future is the same as the value now. Because the optimal management 
actions depended on population size and model weight, uncertainty could be reduced by implementing the 
optimal management actions and updating model weights. We used a passive adaptive framework and 
updated model weights using Bayes’ theorem in 2 simulations to predict median annual population size, 
number of pups recruited, number of depredation events, and reward values for how well each 
management action met objectives.  

We first simulated a population for 100 years. Each year, the optimal management action was selected 
and enacted, and the population and model weight states were updated. We updated model weights 
assuming Model 1 was correct, then Model 2 was correct. E.g., we used abundance estimates from Model 
1 as the mean in a normal distribution with an SD of 20% to draw an estimate for the observed data, then 
determined its normal likelihoods given the estimates for each model with an SD of 20%.  

We next simulated the Montana wolf population from 2011 – 2018 using the management actions enacted 
by MFWP each year. We used the status quo for 2012 – 2018, and restricted management for 2011 – 
2012. To update model weights, we compared predictions from the competing models to the estimated 



abundance of wolves from original POM estimates (Inman et al. 2019). To account for uncertainty in 
estimated abundance, we resampled the estimates 1000 times for each year and replication from a normal 
distribution using the reported mean and SD. We took the mean model weight for each replication and 
resampling run to get the annual weight for both models.  

Sensitivity analyses  

We evaluated model performance and sensitivity of results to uncertainty in parameter values, 
construction of utility functions, and weights of objectives (Keever 2020). We used one-way sensitivity 
analysis (Conroy and Peterson 2013) to test sensitivity of the optimal decision reward value to uncertainty 
in parameter estimates. We also used response profile sensitivity analysis (Conroy and Peterson 2013) to 
identify how the optimal decision changed across a range of parameter values. To assess sensitivity of 
results to utility functions and risk attitude, we compared the reward values for each risk attitude. We 
evaluated sensitivity of the expected reward values to weights for objectives using indifference curves. 
Lastly, we evaluated the sensitivity of evolving model weights to bias in abundance estimates of wolves. 
Estimates of wolf abundance from POM hinge on assumptions about territory size (Sect. 1). Therefore, 
we tested the sensitivity of model weights to a 15% change in annual estimates of abundance.   

Results  

Median population size, number of pups recruited, number of depredation events, and the reward value 
differed for the 4 management actions (no harvest, restricted harvest, status quo, and liberal harvest) when 
the weights of the 2 population models were equal. No harvest had greater median number of depredation 
events per year (Fig. 3.6A). Restricted harvest was expected to have slightly more depredation events than 
the status quo or liberal harvest. Total pups recruited was expected to be greatest under more restrictive 
harvest (Fig. 3.6B). Total harvest was a median of 66 wolves under restricted harvest, 225 under status 

 
Figure 3.6. Expected annual performance from 2 competing models of wolf population dynamics with equal model weight 
under 4 management actions: no harvest, restricted harvest, status quo, and liberal harvest. The figures show the median 
expected A) # of depredation events, B) # of pups recruited, C) total harvest, and D) future population size as a function of the 
current state (i.e., abundance) of the population and management action. The black line in D represents a stationary population.  



quo, and 253 under liberal harvest (Fig. 3.6C). Generally, no or restricted harvest yielded greater expected 
future population sizes (Fig. 3.6D). 

More liberal harvest regulations had greater utility than no or restricted harvest for the objectives to 
reduce impacts of wolves on ungulates, reduce impacts of wolves on livestock, maintain hunter 
opportunity for wolves, and increase public acceptance of wolf harvest (Fig. 3.7). Conversely, utility for 
maintaining a viable wolf population was greatest under no or restricted harvest. The median reward for 
each management action differed across population states. 

Policy plots showed that the optimal management action varied little with different model weights (varied 
by ~ 150 wolves for 0.1 and 0.9 model weight; Fig. 3.8). In general, the optimal management action was 
no harvest when population size was < 170 wolves, restricted harvest when the population was 170 – 280 
wolves, status quo harvest when 280 – 1330 wolves, and liberal harvest when >1330 wolves (Fig. 3.8).   

 

 
Figure 3.7. Utility values for the objectives (A-E) and the mean expected reward value for meeting all objectives (F) for harvest 
management of wolves in Montana, 2011-2018, as a function of current abundance (Current N). Objectives included: A) reduce 
impact of wolves on ungulate populations, B) reduce impact of wolves on livestock, C) maintain viable and connected wolf 
population, D) maintain hunter opportunity for wolves, and E) increase public acceptance of wolf harvest. The management 
action with the greatest utility or reward does best at meeting that objective. given population size. 



  

 
Figure 3.9. Expected annual performance from simulations of passive adaptive harvest management of wolves. The expected 
performance metrics were derived from the weighted average of 2 models of wolf population dynamics (Model 1: no net 
immigration, left column; Model 2: positive net immigration, right column). Performance included expected A) population size, 
B) # of annual depredation events, C) # of pups recruited, and D) change in Model 1 weight. Shaded areas are 50, 80, and 95% 
quantiles. 

 

 
Figure 3.8. Optimal harvest management strategies for wolves as a function of current abundance and support for the model 
with no net immigration (Model 1 weight). Decisions included no harvest, restricted harvest, the status quo, and liberal harvest.  



The expected annual performance was similar when we assumed Model 1 and Model 2 were true. When 
we simulated a population under the optimal management actions, wolf population size fluctuated around 
650 wolves under both scenarios (Fig. 3.9). The expected number of depredations was ~60 events per 
year, and the annual number of pups recruited was 256. Under both scenarios, weight for Model 1 
increased over 100 years.  

By simulating AM for the Montana wolf population from 2011 – 2018 based on the decision construct 
and utility functions outlined above, we found that expected population size, number of pups recruited, 
and depredation events declined (Fig. 3.10). This follows general patterns for estimates of abundance of 
wolves and the number of verified depredation events in Montana (Inman et al. 2019). Over the 8-year 
period, weight for Model 1 (net immigration = 0) increased from 0.50 to 0.67, and weight for Model 2 
(net immigration > 0) decreased from 0.50 to 0.33 (Fig. 3.10).   

Sensitivity analyses  

The expected reward for meeting objectives was most sensitive to depredations per wolf, mean 
recruitment of offspring, and harvest (Keever 2020). The model was least sensitive to uncertainty in 
immigration rate or changes in coefficient values for the effect of harvest regulations on percentage 
Montanans satisfied. As mean recruitment rate decreased, the supported management action became more 
restricted (e.g., at a wolf abundance of 350, optimal management changed from status quo to restricted 
harvest). As wolf abundance increased, this relationship become less pronounced. Uncertainty in adult 

 
Figure 3.10. Expected annual performance from simulations of passive adaptive management for wolves in Montana from 2011 
– 2018 based on harvest decisions implemented by MFWP. The expected performance metrics were derived from the weighted 
average of 2 models of wolf population dynamics (Model 1: no net immigration, Model 2: positive net immigration). Figures 
include A) predicted population size (line) compared to estimates of abundance (points), B) median # of annual depredation 
events (line) compared to # of verified depredation events (points), C) median # of pups recruited (line) compared to estimates 
of recruitment (points), and D) change in model weights with no immigration (solid) and positive immigration (dashed). Shaded 
areas are 50, 80, and 95% quantiles.  



survival also altered the optimal management action, but only when the population was small; the same 
was true of uncertainty in total harvest and depredation rate.  

The optimal management action was most sensitive to the construction of the utility function for the 
objectives to maintain a viable wolf population and reduce the impact of wolves on livestock. This effect 
was only observed when abundance was around 350 wolves (Keever 2020). To convert to utility values, 
we assumed there was a maximum threshold beyond which the utility value was 1 (highest utility) for an 
increasing function or 0 (lowest utility) for a decreasing function. For example, for the objective to 
maintain a viable wolf population we assumed that beyond the threshold of 700 wolves the population 
was viable and utility was 1 (Fig. 3.3A). When the maximum threshold for the viable wolf population 
decreased, more conservative regulations performed better at meeting objectives.   

The expected reward for meeting objectives was most sensitive to the objective weights for reducing 
impacts on ungulates, reducing impacts on livestock, and increasing public acceptance of wolf harvest 
(Keever 2020). Changes in weights for these objectives did not alter the optimal management action. The 
optimal management action was most sensitive to objective weights for maintaining a viable wolf 
population and increasing public acceptance of harvest opportunity. Although changing the weights of the 
other objectives resulted in slight changes in the recommended management action, the overall reward 
values for the different management actions remained close, suggesting that changes in weights would not 
result in a clearly superior decision.  

Reduction of uncertainty in the role of immigration to wolf population dynamics was not sensitive to a 
systematic bias in estimates of abundance. We found similar change in model support with a 15% 
increase or decrease in estimates of abundance (Keever 2020). When estimates were biased low, support 
for no net immigration increased to 0.67 compared to 0.66 when the estimates were biased high.   

Discussion 

Management of large carnivore populations can be particularly challenging due to conflicting values of 
stakeholders, debated science, and ecological complexity. We demonstrate how an AM framework 
explicitly incorporating uncertainty in estimates of harvest, biological and sociopolitical values, and 
quantitative objectives could guide decisions of harvest regulations of wolves.  

From our conceptual model, we found that the optimal management actions became more liberal as the 
population grew (Fig. 3.8), and the management actions differed in expected effects on wolf population 
size, number of livestock depredations, and total harvest (Fig. 3.6). This result stems from the weights 
placed on objectives, the models we employed to predict wolf population size, and the utility functions 
that tied wolf population size to the extent to which objectives were achieved. This combination of factors 
that we used to define the decision framework leads to a slightly declining statewide population 
producing the best overall results. Our conceptual framework could be improved by determining optimal 
management actions at finer spatial scales (e.g., by MFWP administrative regions). Whereas we evaluated 
objectives and considered management actions at a statewide scale, metrics used to evaluate objectives 
may vary spatially. For example, most livestock depredation events (95%) occur in 22% of Montana 
(DeCesare et al. 2018), and most harvest (60%) occurs in northwestern Montana. Spatial variation in 
depredation events, harvest, ungulate populations, and wolf impacts on ungulate populations would likely 



influence weight of objectives as well as the expected performance metrics (e.g., number of depredation 
events) if we accounted for such variation more fully. 

Optimal harvest regulations are dependent on the objectives we used, their quantification, and the set of 
management actions considered. Accurately translating objectives into reward values may be the most 
important component. As a metric for the objective to reduce impacts of wolves on ungulates, we used an 
expert opinion-based scale from 0 (no impact statewide) – 1 (wolves reduce ungulate populations 
statewide). This simplification of how wolves affect ungulates ignores functional and numerical responses 
(Mech and Peterson 2003, Hebblewhite 2013, Zimmermann et al. 2015), the confounding effects of other 
predators on ungulates (e.g., Hamlin et al. 2008, Rotella et al. 2018), and the documented spatial variation 
in wolf impacts on ungulate populations (Garrott et al. 2005, Hamlin et al. 2008). For the objective to 
increase public acceptance of wolf harvest and harvest opportunity, we used survey data to relate hunting 
season length, trapping season length, and bag limit to the percent Montanans satisfied. There are other 
metrics or considerations we could have included, such as overall tolerance of wolves in Montana (Lewis 
et al. 2018). We made this decision because we did not have a clear way of predicting how tolerance 
changed with metrics of the wolf population or harvest regulations, but it is also not clear that a changing 
wolf population size or harvest regulations govern Montanans’ tolerance for wolves in Montana. 

In addition to more explicit treatment of spatial variation and utility functions, objective weights affect the 
optimal management decisions. Our results were sensitive to objective weights for maintaining a viable 
wolf population and for increasing public acceptance of harvest as part of wolf management. Ideally, the 
objective weights will reflect the values of stakeholders. However, in situations such as harvest 
management for large carnivores, one set of objectives and weights that accurately reflect the values of all 
stakeholders is not guaranteed. The objectives we used were established during a 2010 SDM workshop 
among agency professionals and decision makers, and some stakeholder groups may not feel their values 
are adequately represented in the list of objectives we used. Situations where objectives and objective 
weights cannot be agreed to by all stakeholders may be better addressed with conflict transformation 
(Madden and McQuinn 2014) or other decision-making approaches focused on conflict management. 

Using AM, we found evidence that net immigration of wolves into Montana was 0. From 2011 to 2018, 
our model for no net immigration gained support (increasing from 0.5 to 0.67). Other wolf population 
models assume that immigration and emigration sum to 0 (Schmidt et al. 2015, Stenglein et al. 2015b, 
Horne et al. 2019), and this assumption may be valid. A study in Idaho also found evidence that 
immigration does not compensate for harvest (Bassing et al. 2020). The wolf population in Montana may 
have saturated much of the prime available habitat. Immigration may be more important for colonizing or 
isolated, small subpopulations (Bull et al. 2009).   

Reduction of uncertainty in AM is contingent on the accuracy of the monitoring data. An assumption in 
many optimization methods is that the state (here, the population size) is observed without error 
(Williams 2009, Conroy and Peterson 2013). This is clearly violated in this and most ecological 
applications. Estimates of abundance of wolves in Montana also rely on accurate estimates of territory 
and group size (Sect. 1). We used POM estimates for our conceptual AM framework, whereas the newer 
iPOM estimates may change weights of the 2 competing models. Although we found model support was 
insensitive to a 15% change in abundance estimates, we did not test the effects of greater changes, and 
iPOM represents a >15% increase over POM estimates. Changes in bias over time could also influence 



results. Our sensitivity analyses also revealed that at small population sizes (<350 wolves), optimal 
management actions were sensitive to uncertainty in recruitment, survival, depredation, and harvest.  

When uncertainty impedes effective decision making, AM can facilitate learning and reduce uncertainty 
(Williams et al. 2002; Conroy and Peterson 2013). Importantly, AM can improve future decisions to 
manage populations more effectively. Furthermore, as demonstrated in this AM conceptualization, AM 
can include public survey data (Lewis et al. 2018). Public opinion is an influential component in wildlife 
management, yet it is rarely explicitly incorporated into the decision process (McCool and Guthrie 2001). 
When there is a transparent link between public input and management decisions, satisfaction with 
management often increases (McCool and Guthrie 2001).  



SECTION 4: RECOMMENDED MONITORING PROGRAM 

ABSTRACT  Monitoring is central in wildlife management, but efficient and effective use of limited 
resources requires targeted monitoring. Because wolves in Montana are managed through harvest, reliable 
estimates of population size will help inform harvest regulations. We therefore recommended a 
monitoring program and considerations for MFWP’s Wolf Program. Abundance estimation will entail the 
continuation of hunter harvest surveys and monitoring related to the occupancy model. This includes pack 
centroids, although potential exists for a reduction from current effort. Approximate locations of wolves 
removed in response to livestock conflicts will be needed for the pack size model. Future monitoring of 
pack size may be needed to calibrate the model, such as if changes are made to harvest regulations. Once 
finalized to include the iPOM methodology, the recruitment model will require collar and pack count 
data.  

Introduction 

Monitoring plays a central role in wildlife management. Monitoring allows managers to detect changes in 
wildlife populations or habitats, evaluate effectiveness of management actions, make decisions based on 
status of the resource, and facilitate learning to improve efficacy of future management actions (Nichols 
and Williams 2006). Monitoring is often most useful when it is directly linked to objectives and targets 
key uncertainties that impede management (Gibbs et al. 1999; Nichols and Williams 2006). Targeted 
monitoring can be more efficient and a better use of limited resources compared to surveillance 
monitoring (i.e., monitoring not guided by a priori hypotheses and including all aspects of a population’s 
demographic and ecological factors; Nichols and Williams 2006). 

Because wolves in Montana are managed through harvest, reliable estimates of population size are needed 
to make informed decisions for harvest regulations. As the final step of this project, we recommended a 
targeted monitoring program to provide reliable estimates of population size and inform decisions. Below, 
we discuss the recommendations for iPOM and the recruitment model. 

iPOM 

As detailed in Section 1, the integrated Patch Occupancy Model (iPOM) is a multi-model approach 
incorporating models for occupancy, territory size, and pack size (Sect. 1.7; Sells et al. in prep). The 
original POM approach required numerous data inputs, including annual statewide mean group size, a 
territory overlap index calculated from the statewide set of pack centroids identified each year, and a 
decade-old estimate of mean territory size. These data inputs are now omitted from iPOM, enabling 
monitoring to be targeted more efficiently and effectively to provide reliable estimates of wolf abundance. 

Occupancy model 

The occupancy model is a key element of the abundance estimates and will serve as the primary focus for 
monitoring effort. Annual Hunter Harvest Surveys will continue to be needed to collect observations of 
wolves each year. These surveys are conducted as part of larger MFWP operations and require minimal 
added effort to include questions specific to wolf sightings.  



The occupancy model was designed to use pack centroids as a measure of true positive detection (Sect. 
1.7; Rich et al. 2013, Miller et al. 2013). This will entail continued monitoring by Wolf Specialists to 
verify packs each year and report approximate locations of pack centroids. Effort to detect new and 
existing packs can be focused in the areas predicted by the territory model given its demonstrated 
predictive ability (Fig. 1.7). Empirical data collected in past years can also help guide search effort, as 
many areas continue to be used each year by wolves (Fig. 1.7). The expert knowledge of the Wolf 
Specialists will continue to be invaluable for efficient and effective monitoring of pack centroids. Remote 
cameras deployed strategically at suspected den and rendezvous sites or along wolf travel routes are likely 
to be helpful in detecting packs. Drones may also prove useful for remotely visiting these sites to 
unobtrusively search for wolves (T. Smucker, MFWP, pers. comm.). Cameras, drones, or visual surveys 
could also be deployed opportunistically at kill sites of any collared ungulates.  

Once a pack is detected, its centroid can be estimated using the Wolf Specialists’ expert knowledge. 
Because any 600 km2 grid cell containing a centroid becomes a true positive detection regardless of the 
placement of the centroid within, precise coordinates of territory centroids are unnecessary. As such, the 
most efficient monitoring will entail verifying only whether a grid cell contains a pack. If a pack appears 
to use > 1 cell, the cell that appears to contain the greatest use should be the one reported.  

There is potential for alternative data sources to be used in place of pack centroids for true positive 
detections. MFWP has expressed interest, for example, in using mortality locations of wolves harvested 
by trapping and hunting to indicate cells that contain packs. Because lone or dispersing wolves may also 
be harvested, safeguards will be needed to avoid over-estimation of true positive detections. For example, 
a true positive detection might require ≥2 harvest locations in the cell to reduce the likelihood of 
including lone or dispersing individuals. These locations might also be paired with the mapped territory 
predictions and past empirical observations (Fig. 1.7); harvest locations in areas not used in the past or 
predicted to hold territories could trigger independent verification of pack presence by Wolf Specialists.  

We suggest that MFWP conduct sensitivity analyses to evaluate monitoring effort associated with pack 
centroids and understand potential biases that might arise. Such analyses might involve gradually thinning 
the pack centroid inputs into the model (e.g., 10% fewer centroids, 20% fewer, etc.) and rerunning the 
occupancy model to determine effects on occupancy estimates. Harvest locations could also be included 
as true positives to again compare resulting occupancy estimates. We suspect a combination of 
monitoring for pack centroids and harvest locations might serve to reduce monitoring effort while 
incorporating available data from harvest. 

Territory model 

The territory model was designed to significantly reduce monitoring effort and improve accuracy of 
abundance estimates from iPOM (Sells and Mitchell 2020; Sells et al. in press; Sells et al. in review a). In 
addition to the estimated area occupied, territory size has strong effects on overall abundance estimates. 
The territory model’s mechanistic approach maximizes predictive ability across time and space (Aarts et 
al. 2008, Sells et al. 2018) and enables predicting territorial behavior across changing environmental and 
social conditions (Sect. 1.4).  



Changing levels of competition among packs are an important driver of territory size (Sells and Mitchell 
2020, Sells et al. in press; Sells et al. in review a). We simulated widely ranging levels of competition to 
provide a suite of predictions that can be used in future years. Higher pack densities are predicted to yield 
more consistency in means and ranges in territory sizes across Western Montana (Fig. 1.14). Less spatial 
and temporal variation in territory size means that a given unit of area occupied will contain a similar 
estimated pack abundance regardless of where that area occurs. This is not true at low pack densities due 
to the greater spatial variation in territory sizes under these conditions. Although consistently small 
territories will produce higher estimates of pack abundances under iPOM, it is arguably most important to 
successfully predict territory size at low pack densities both due to the spatial variation involved and risk 
of over-estimating abundance for a population that might be imperiled with extirpation. Our application 
of the model to conditions a decade ago demonstrates our ability to accurately predict territory sizes even 
at relatively low pack densities (Sect. 1.4).  

Major shifts in prey populations will also have implications for territory size. We designed our prey 
indices to be general and stable by using long-term datasets to model average densities across space and 
time. Where local prey abundances change sharply from the densities estimated for the previous decade, 
the model’s predictions for changing prey densities can be used to calibrate territory size estimates (Sect. 
1.4). This would likely have limited effects on the total abundance estimates if prey populations increase 
in some areas and decrease in others (as some territories would increase in size while others decrease). 
Should prey populations undergo widespread, long-term, directional changes, the territory model could be 
updated and ran with new prey indices to update estimates of spatial requirements for wolves.  

Many studies of space use to date have relied on deploying GPS collars, but as we discovered for wolves 
in our study system, this yields a low return on investment given the costs and challenges involved. A 
GPS collar costs >$2000 upfront, must be carefully maintained before and after capture, and involves 
hundreds of dollars in annual data charges, along with costly battery replacements and regular servicing. 
Collars more importantly require intensive effort to deploy. Trapping efforts to deploy collars occur 
spring through fall (freezing injuries make winter trapping unsafe for wolves). Wolf Specialists and their 
field crews may spend weeks in a pack’s territory to capture a single individual. These efforts may fail 
altogether, despite these crews’ expertise. All indications point to declining capture success in recent 
years, regardless of investment in effort. Wolves may be wiser to these efforts now that trapping is 
employed pervasively across wolf habitat by both MFWP and recreational trappers. The alternative 
method to capturing wolves is via helicopter darting, which cost approximately $3000 – $4000 or more 
per wolf in contract costs, not including MFWP personnel time or collar costs. Helicopter captures require 
intensive advance monitoring effort by MFWP to locate wolves, and successful aerial capture is far from 
guaranteed. These efforts are furthermore dangerous both for humans and wolves; aviation accidents are a 
primary cause of job-related deaths among wildlife professionals in the US (Sasse 2003) and wolves may 
be injured or killed during or shortly after capture.  

For this study, a substantial investment in time and resources to capture wolves using both ground and 
aerial methods yielded 93 total captures over a 5-year period (Sect. 1.3; Sells et al. in press). After a 
successful capture, a wolf must survive long enough with a functional collar to provide the data needed to 
estimate space use. Of the 93 wolves captured, only 46% yielded sufficient data to delineate 28 pack 
territories. This low rate of return on investment was due to collar failure (39% of wolves captured had 
collar failure, largely within the first year or so after capture) and mortalities from harvest or other causes 



(46% of wolves captured), as well as the fact that pups and yearlings often disperse before sufficient data 
can be collected (16% of captured wolves dispersed).  

We designed the mechanistic territory model to maximize the utility of the data collected during this 
study, and critically, to preempt a need for continued capturing and collaring for estimation of space use. 
No additional monitoring data are required for territory size. If in the future there are drastic changes to 
conditions related to prey or competition, however, collar data could help assess the model’s predictive 
capacity, especially if any modifications are made to the model. We demonstrated the strong predictive 
capacity of the model for recent and past years and expect it to continue to be predictive in future years 
given its mechanistic nature (Aarts et al. 2008). Despite the challenges of collaring wolves, collaring 
efforts are likely to continue into the future at least at some level for livestock conflict prevention and 
response, and potentially for estimating recruitment (below). Collar data may also be collected for future 
studies on wolves. Sufficient location data may thus eventually be opportunistically available to again 
verify the territory model’s predictive capacity, if desired. Any apparent changes in accuracy of the model 
estimates would be most problematic if consistent directional biases are observed, otherwise a 
combination of both under- and over-estimation in territory size would likely cancel any major effects on 
estimated wolf abundances. 

Pack size 

The pack size model was likewise designed to significantly reduce monitoring effort and improve 
accuracy of abundance estimates from iPOM (Sect. 1.5 – 1.6; Sells et al. in review b). Pack size affects 
the overall abundance of wolves during the final calculations in iPOM (Sect. 1.7). We designed the pack 
size model to be general and involve minimal monitoring effort. We attempted to include the best 
available data representing hypothesized connections to mechanisms driving pack size. However, the 
model’s empirical nature and use of proxies will make it more susceptible to bias under changing future 
conditions. Applying an empirical model beyond the conditions for which the data existed during model 
development entails extrapolation based on patterns (Aarts et al. 2008). If future conditions (e.g., intensity 
of harvest management) shift beyond the conditions experienced within our 14-year dataset, the effects on 
pack size will be unknown, making predictions less reliable. 

The only annually-changing input required for the pack size model is the number of wolves removed for 
livestock conflicts in each grid cell. This will entail timely and accurate reporting to MFWP by Wildlife 
Services and the public for approximate locations of wolves killed each year in response to human-wolf 
conflicts (ideally, township, range, and section for sites of removals). When removals are unreported, the 
grid cell’s pack size estimate will be biased slightly high, leading to a slight positive bias in overall wolf 
abundance estimates. Wolf abundance estimates from iPOM could be adjusted by the sum of the 
approximate number of depredation removals without coordinates plus those assumed to be unreported.  

Various conditions will trigger a need to increase pack size monitoring in the future. Increased 
liberalization of harvest regulations could influence pack sizes in unknown ways. Harvest regulation (no 
harvest, restricted harvest, and liberal harvest) is furthermore a main driver of the pack size model. Other 
conditions that may trigger increased monitoring include, e.g., a widespread disease outbreak within the 
wolf population. As no data exist to model these relationships, future monitoring effort will need to 
increase if such conditions occur. As with the implications of assumptions for POM (Sect. 1.1), if actual 



pack sizes drop below that estimated by the pack size model, estimated abundance would be biased higher 
than the true population size. The opposite would occur if pack sizes increased from model estimates.  

We conducted a simulation analysis to determine the monitoring effort needed to accurately estimate 
mean pack size if conditions change in the future. We represented truth using the 2005 – 2018 pack size 
dataset for good quality observations (i.e., the data used in Sect 1.5). We used these observations to 
calculate the true pack size observed for each harvest intensity. We conducted the simulation by creating 

 
Figure 4.1. Boxplots for the difference in estimated pack size from truth given the # of packs sampled. Accuracy quickly 
increased with added monitoring effort. Lower and upper box edges are the 25th and 75th percentiles, respectively; whiskers 
extend the smallest and largest values within 1.5 the inter-quartile range, and outliers are displayed as points. (As results were 
similar across harvest regulations, we combined results for this plot.) 
 

 
Figure 4.2. The mean number of wolves misestimated per pack quickly dropped towards 0 with additional monitoring effort. 
(Restricted harvest more quickly reaches truth because only 106 packs were available to represent truth, so a sample of 105 packs 
includes nearly the entire population.) 
 



monitoring schemes of {5, 10, 15...150 packs}. In the first round, 5 packs were sampled without 
replacement from the dataset partitioned for the no harvest regulation. We calculated the mean estimated 
pack size from this sample of 5 packs, then calculated the difference from truth. We repeated this 10000 
times per monitoring scheme. We then repeated these steps for the restricted and liberal harvest 
regulations. (As the restricted harvest data partition contained 106 observations, we ended the monitoring 
scheme at 105 packs for this regulation.)  

From our simulation analysis, we determined that accuracy quickly increases with small added 
investments in monitoring. Boxplots demonstrate a strong potential for bias and low precision in 
estimated pack size if few packs are sampled (Fig. 4.1). In particular, mean pack size could be strongly 
over-estimated if only 5 packs are sampled. However, the chances of this extensive bias quickly diminish 
with additional packs sampled. Summarized as mean effects on accuracy, sampling 5 packs will 
misestimate 1 wolf per pack on average, and average accuracy quickly improves with additional pack 
sampled (Fig. 4.2). Projecting these misestimates out to an example population of 150 packs enables 
estimating the overall implications for estimated abundance (Fig. 4.3). This information can be used to 
help balance tradeoffs in monitoring costs and accuracy of pack size estimates when choosing how many 
packs to monitor.  As the rate in gained accuracy declines at a sample of ≥30 packs, we suggest this cutoff 
as a reasonable starting point for monitoring effort. 

Recruitment Model 

As detailed in Section 2, the recruitment model was designed using an integrated population modeling 
approach (Keever 2020). The model inputs included POM estimates, collar data, and group count data.  

To assess usefulness of the recruitment model, we conducted a simulation analysis to determine the 
accuracy of recruitment estimates with variable amounts of group count and collar data. For the analysis, 
we simulated a wolf population for 15 years and then sampled from the population. We first generated 
100 wolf packs with group counts using a Poisson distribution with an average pack size of 7 wolves. We 

 
Figure 4.3. The overall population effect of misestimating pack size, assuming a population of 150 packs.   
 



then randomly generated survival, recruitment, and dispersal rates using a uniform distribution with a 
range of biologically realistic rates for each year (Murray et al. 2010, Smith et al. 2010, Ausband et al. 
2015, Stenglein et al. 2015b). This allowed for yearly variation in the demographic rates, which we 
recorded as truth. The simulated wolves in the initial 100 packs survived and reproduced based on these 
demographic rates. We included stochasticity using a Poisson distribution for reproduction and a binomial 
distribution for survival and dispersal. The number of packs was determined by generating random patch 
occupancy, colonization, and extinction rates from biologically realistic rates for each year and 
calculating the area occupied by wolves. We divided the area occupied by wolves by 600 km2 (Rich et al. 
2012) to determine the number of packs for our truth to which estimates could be compared.  

We sampled from the simulated packs and population to create datasets representing variable monitoring 
effort. For group counts we randomly sampled 50, 25, and 12 packs per year. We added observation error 
to these counts so that the data were also a sample of wolves within the pack. We also tested the model 
without any group data. This yielded 4 total datasets (50, 25, 12, and 0 pack counts per year). For collar 
data we sampled 20 and 10 wolves per year to generate known-fate observations. We then sampled and 
created datasets for 20 and 10 collars every year, every 2 years, and every 5 years (6 datasets). We used 
every combination of the collar and group count datasets for a total of 24 scenarios. For each scenario we 
generated occupancy data by sampling 500 sites with 5 occasions per year.  

We estimated recruitment using the model for all 24 scenarios. We compared estimates of recruitment to 
truth and calculated the percent error for each of the scenarios. We used MCMC (Brooks 2003) methods 
in a Bayesian framework to fit the model using program R 3.4.1 (R Core Team 2020) and package R2Jags 
(Su and Yajima 2015) that calls on 
program JAGS 4.2.0 (Plummer 2003). 
We ran 3 chains for 100,000 iterations, 
discarded the first 50,000 iterations as a 
burn-in period, and used a thinning rate 
of 2.  

The models for all scenarios using group 
count data converged and had Gelman-
Rubin statistics < 1.1 for each parameter. 
The scenarios with 50 group counts were 
most accurate in estimating recruitment 
across collar datasets (Table 4.1). 
Scenarios with 25 and 15 group counts 
had lower accuracy in estimated 
recruitment across collar datasets. 
Recruitment estimates with 15 and 25 
group counts and 20 or 10 collars at least 
every 2 years were similar to recruitment 
estimates with 50 group counts and the 
same collar data (Fig. 4.4). Models for 
scenarios without group count data (not   

Table 4.1. Mean percent error and standard deviation of estimates from 
truth for a simulated wolf population with different amounts of collar and 
group count data. The greater the percent error, the less accurate the 
estimate. The mean and SD were calculated as the mean from all group 
count datasets for the # of collars, and the mean from all collar datasets for 
group counts.  

# of collars 

recruitment, 
𝛾̅𝛾 (𝑆𝑆𝑆𝑆) 

group 
size, 
𝐺𝐺 � (𝑆𝑆𝑆𝑆) 

abundance, 
𝑁𝑁� (𝑆𝑆𝑆𝑆) 

survival,  
𝜙𝜙� (𝑆𝑆𝑆𝑆) 

10 per yr 29.5 (22.90) 5.7 (3.05) 9.9 (8.23) 8.6 (6.46) 

10 per 2 yr 30.6 (26.35) 5.7 (3.05) 9.7 (8.02) 11.3 (8.41) 

10 per 5 yr 55.1 (28.99) 5.8 (3.06) 8.9 (7.05) 31.6 (21.58) 

20 per yr 27.8 (22.08) 5.7 (3.05) 9.3 (7.95) 8.1 (6.05) 

20 per 2 yr 30.7 (21.41) 5.7 (3.05) 9.4 (7.98) 10.1 (6.97) 

20 per 5 yr 63.7 (29.36) 5.8 (3.05) 8.6 (7.68) 36.3 (22.01) 

# of group 
counts 

    

0 54.5 (33.27) NA 15.9 (7.81) 20.0 (18.64) 

15 39.8 (29.75) 5.8 (3.33) 7.3 (7.36) 19.5 (20.16) 

25 40.8 (26.53) 5.5 (3.15) 6.7 (5.60) 21.0 (20.13) 

50 23.2 (13.78) 5.9 (2.55) 7.2 (6.16) 10.2 (8.61) 

 

 



  

 
Figure 4.4. Estimates of recruitment in # of pups per pack that survive 1 year (orange circles) from an integrated population model 
compared to truth (blue circles) for a simulated wolf population with different amounts of group count and collar data. 

 
Figure 4.5. Estimates of survival (orange circles) from an integrated population model compared to truth (blue circles) for a 
simulated wolf population with different amounts of group count and collar data. 



accounting for social structure) had trouble converging, and those that did converge were less precise and 
accurate than scenarios with group counts. Survival estimates for scenarios with 10 or 20 collars at least 
every 2 years were relatively accurate for all amounts of group count data, and survival estimates were 
inaccurate for 10 or 20 collars every 5 years with 25 group counts or less (Fig. 4.5). Estimates of 
abundance were similarly accurate for all scenarios, however the scenarios without group counts were 
less precise (Table 4.1).  

We demonstrated that the recruitment model enables estimating the number of pups recruited per pack 
and into the population (Sect. 2). Field effort to collect group counts and deploy collars would remain at 
relatively high levels that may not be feasible given costs, constraints, and tradeoffs involved in this 
investment. Group count data greatly increase the precision and accuracy of estimates. There appears to 
be minimal gains in accuracy of estimates by increasing monitoring efforts from 15 group counts and 10 
collars every 2 years to either 20 collars every 2 years, or 10 or 20 collars every year. Similarly, there 
appears to be little increase in accuracy from increasing monitoring from 15 group counts and 10 collars 
every 2 years to 25 group counts with the same collar data. If the recruitment model is used to estimate 
and report recruitment, we therefore recommend monitoring to produce 15 group counts and monitoring 
the fate of 10 collared wolves every 2 years. Importantly, because it was developed using the original 
POM estimation methods, the recruitment model would have to be updated to include the iPOM 
framework to make the model fully functional. Additional evaluation is warranted to test model 
assumptions that may influence accuracy in estimates (Sect. 2; Keever 2020).  

General Suggestions for Montana’s Wolf Program 

It will be important to manage the wolf population in a manner to account for uncertainty. We suggest 
that MFWP set threshold population sizes that would trigger additional monitoring effort and 
management responses. In response to federal delisting criteria, the Montana Wolf Conservation Strategy 
(MFWP 2002) requires a minimum of 15 breeding pairs and 150 wolves to have a regulated public 
harvest season. Protections will be renewed under the Endangered Species Act if numbers drop too low. 
A population of 150 wolves thus provides a definitive minimum population threshold that will trigger 
cessation of public harvest. Selection of additional thresholds and resulting responses will necessitate 
careful consideration of tolerance within MFWP for the risk of dropping below minimum population 
targets. Presence of ≥15 breeding pairs is a safe assumption for a large and relatively stable population; 
however, population thresholds could also be selected to trigger investment in the effort necessary to 
update the recruitment model as a means for estimating recruitment. 

Importantly, selected thresholds should be sufficiently high to allow time for both data collection and 
resulting changes in management to take effect. Estimated rates of population change from iPOM could 
possibly help forecast whether and when thresholds might be crossed (including by the bounds of 
uncertainty from iPOM). Monitoring effort should be increased before a threshold is projected to be 
reached. If the presumed cause of the decline is harvest, changes to harvest regulations represent a lever 
relatively within MFWP control. In contrast, disease outbreaks in wild populations are likely to remain 
beyond human control. A greater buffer of time and population size may thus be required to prevent a 
population at risk of disease from falling below minimum thresholds. The same is true for large-scale 
declines in prey resources. In these and other scenarios relatively beyond human control, harvest 
regulations are still likely to remain an important lever for helping a population remain above selected 



thresholds. If necessary, uncertainty in iPOM estimates could be reduced through various means, perhaps 
most obviously by increasing monitoring effort to verify >150 wolves on the landscape (e.g., through trail 
cameras, drones, or collar deployment paired with added surveys at current wolf locations). Other 
methods could also or alternatively be employed to provide estimates alongside iPOM, such as camera 
trap estimation (e.g., Loonam et al. 2020) or genetic analyses (e.g., Bischof et al. 2020).  
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APPENDIX A. PREDICTED DENSITY 

On the following pages, iPOM’s annual predictions for densities of packs and wolves per 1000 km2 are 
shown. Also included are the known pack centroids (black dots on pack density maps) and reported 
harvest locations (red dots on wolf density maps), demonstrating strong alignment between known wolf 
activity and iPOM predictions.  
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