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EXECUTIVE SUMMARY 

This report summarizes the results of the fourth year (2019) of a four-year (2016–19) research 

project conducted by researchers at Montana State University to assess the effects of livestock 

grazing management and rangeland conditions on the population and spatial ecology of grassland 

birds and their predators. The primary objectives of this study are to 1) investigate rest-rotation 

grazing as a rangeland management technique to improve habitat conditions for sharp-tailed 

grouse and 2) develop a mechanistic understanding of the effects of grazing management on the 

occurrence and abundance of grassland passerines and mesopredators. Field work concluded in 

March 2019 and data collection is complete. Work this year focused primarily on analyzing data 

and publishing results.  In this report we present final study results for all project objectives. 

We examined the effects of grazing management on the ecology of sharp-tailed grouse by 

comparing demographic rates and habitat selection among properties managed with rest-rotation 

grazing to those managed with either season-long or summer rotation grazing. Sharp-tailed 

grouse were trapped at 12 leks using walk-in funnel traps during 15 March – 5 May 2016-2019. 

We captured 435 individual sharp-tailed grouse (211 females, 224 males) a total of 761 times.  

We located 188 grouse nests in treatment pastures (147 first nests, 41 renesting attempts) laid by 

128 individual females during 2016–2018.  Nesting frequency (± SE) was 1.00, while the 

probability of renesting after first nest failure was 0.61 ± 0.10. Hatch rate of eggs (± SE) was 

91.3 ± 2.4%. Mean clutch size for all nest attempts was 10.2 ± 0.59 eggs. Mean clutch size for 

first nest and renests was 11.1 ± 0.57 and 9.6 ± 0.60 eggs, respectively.  

The best predictors of nest site selection included visual obstruction (VOR) at the nest bowl, 

percent residual grass cover and a measure of fragmentation (mean shape complexity). Visual 

obstruction at the nest bowl had the largest effect and was positively related to the relative 

probability of selection. Overall nest survival varied by year and ranged from 0.29 ± 0.06 in 

2016 to 0.48 ± 0.07 in 2018.  The best predictors of nest survival were VOR averaged across a 6 

m radius plot, the proportion grassland and the stocking density while the nest was active, which 

were all positively related to daily nest survival. There was also some evidence for an effect of 

grazing system, and daily nest survival was lower in rest-rotation pastures compared to season-

long pastures, but effects were not statistically significant. Overall nest survival was 0.48 ± 0.07 

in season-long pastures, 0.38 ± 0.06 in summer rotation pastures, and 0.32 ± 0.06 in rest-rotation 

pastures. We did not find evidence that nest survival differed among nests located within the 

rest-rotation system (grazed during the growing season, grazed post-growing season, or rested). 

We monitored 95 broods to estimate survival and document habitat use (Table 16). Twenty-two 

broods spent the majority of the time (>70% of brood locations) in rest-rotation pastures, 30 

spent the majority of time in summer rotation pastures, 29 spent the majority of time in season-

long pastures, and 14 split time between multiple grazing systems. Brood success, calculated as 

the proportion of broods fledging ≥1 chick to 14-d of age, was 0.59 ± 0.10, 0.80 ± 0.07, 0.66 ± 

0.09, and 0.43 ± 0.13 for broods located on the rest-rotation, summer rotation, season-long and 

multiple systems, respectively. Of broods that survived to fledging, the proportion of chicks that 

survived was 0.55 ± 0.08, 0.54 ± 0.06, 0.59 ± 0.07, and 0.32 ± 0.09 for broods located on the 

rest-rotation, summer rotation, season-long and multiple systems, respectively.  

We evaluated survival for 153 female sharp-tailed grouse, some of which were monitored in 

multiple years, resulting in 180 bird-years.  Of the 180 bird-years, 66 represented females 

primarily using the rest-rotation system, 60 using the summer rotation system, 46 using the 
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season-long system, and 8 splitting time among multiple grazing systems. Overall, 86% of 

mortality events were due to predation, with the remaining mortality events due to hunter harvest 

(8%) or unknown causes (6%).  Overall survival (± SE) during the 5-month breeding season for 

female sharp-tailed grouse across all years and grazing systems was 0.65 ± 0.04.  Despite 

significant annual variation in precipitation, breeding season survival did not differ significantly 

among the 3 years of study.  Grazing management did not have a meaningful influence on any 

aspect of the cumulative breeding season survival of adult female sharp-tailed grouse, although 

the seasonal timing of peaks in mortality risk did differ among systems. More importantly, 

cropland increased mortality risk of adult female sharp-tailed grouse, suggesting that strategies 

that preserve economically viable ranching in unfragmented grassland habitats may have the 

greatest benefits for sharp-tailed grouse survival. 

During the 2016–2018 breeding seasons, we collected a total of 7,178 locations and calculated 

142 home ranges for 118 individual females (40 in 2016, 53 in 2017, 49 in 2018). Mean breeding 

season home range size for all females was 489 ± 41 ha but varied from 58–3,717 ha. Grazing 

system did not have a significant effect on average size of home ranges. Density of edge habitat 

within the home range was the best predictor of home range size and was negatively related to 

the size of breeding season home ranges. When selecting breeding season home ranges, females 

preferred mixed grass prairie habitats (>94% of use locations), even though roughly 83% of the 

entire study area was composed of mixed-grass prairie. Females strongly selected against 

cropland during the breeding season, even though only 4% of the study area was cropland. There 

was no evidence that selection of home ranges in relation to grazing system was different from 

random (p = 0.20), suggesting that females were not differentiating between pastures in the 

different grazing systems. In contrast to selection of home ranges, we found only weak selection 

for habitat features within the home range.  In contrast to expectations, we found no evidence 

that grazing system affected second or third-order habitat selection at the population-level, 

despite significant variation in precipitation among years; moreover, we observed highly variable 

selection patterns among individuals. 

We conducted 1,830 point-count surveys at 305 sites during 2016–17 to evaluate the relative 

effects of three livestock grazing systems on the abundance and community composition of 

grassland birds. Overall, we found inconsistent responses in abundances of grassland birds 

relative to livestock grazing systems, and no discernable differences among grazing systems 

relative to community composition. However, local abundances were often driven by 

interactions between grazing system and rangeland production potential, suggesting the effects of 

livestock grazing management were generally mediated by rangeland productivity. Additionally, 

associations between avian abundance and grazing management parameters (e.g., stocking rate) 

were species-specific. 

During 2017-18, we conducted camera trap surveys of mesocarnivores at our study area to 

evaluate the effects of livestock grazing management on mesocarnivores occupancy. Our results 

indicated that mesocarnivores use (e.g., occupancy) was higher in pastures managed with rest-

rotation grazing systems than in pastures managed with season-long or summer rotational 

systems. 
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EFFECTS OF LIVESTOCK GRAZING MANAGEMENT ON THE ECOLOGY OF SHARP-

TAILED GROUSE, GRASSLAND BIRDS, AND THEIR PREDATORS IN NORTHERN 

MIXED GRASS PRAIRIE HABITATS 

2019 Annual Report 

OBJECTIVES 

Objective 1: Investigate rest rotation grazing as a rangeland management technique to 

improve sharp-tailed grouse fecundity and survival.  

Accomplishments 

Efforts in 2019 focused on completing field work (first quarter) and analyzing data and writing 

publications of our work.  Below we report complete results for the entire 4-year study. 

Methods: 

Fecundity.—Sharp-tailed grouse were trapped at 12 leks (5 in rest-rotation pastures, 3 in 

summer rotation pastures, and 4 in season-long pastures) using walk-in funnel traps during 

March-May, 2016-2018. We recorded standard morphometrics including body mass, wing chord, 

tarsus length, and culmen length, and fitted all birds with a uniquely numbered metal leg band. 

Birds were sexed and aged by plumage characteristics. Males were fitted with a unique 

combination of color bands to allow for resighting at leks next year. We fit captured females 

with 18-g necklace-style radio-transmitters with a 6-8 hour mortality switch and an expected 

battery life of 12 months (model A4050; Advanced Telemetry Systems, Insanti, MN). Previous 

work found no impact of necklace-style radio-transmitters on prairie-grouse demography (Hagen 

et al. 2006). All animal handling was approved under Montana State University’s Institutional 

Animal Care and Use Committee (Protocol #2016-01). 

Radio-marked females were located by triangulation or homing ≥3 times/week using portable 

radio receivers and handheld Yagi antennas during the nesting and brood-rearing period (April—

August). When females localized in an area and their estimated location did not change for 2 

successive visits, we assumed that the female was sitting on a nest. For half of the females, we 

used portable radio receivers and handheld Yagi antennas to locate and flush the female so eggs 

could be counted and the nest location recorded with a handheld GPS unit. We marked nest 

locations with natural landmarks at a distance ≥ 25 m to aid in relocation. Nest sites were not 

visited again until it was determined that the female had departed (i.e., was located away from 

the nest for ≥ 2 days during incubation and ≥ 1 day after expected hatch date) due to successful 

hatching of the clutch or failure due to either predation or abandonment. Nesting females were 

otherwise monitored by triangulation from a distance > 25 m. Thus, nest sites for half of the 

females were only disturbed by the presence of an observer a maximum of 1 time during the 

laying and incubation period. The remaining half of the females were never flushed and nest 

attempts were monitored from a distance of > 25 m to evaluate whether the protocol of flushing 

females has a negative effect on nest survival. A female was assumed to be incubating if she was 

located in the same location for 2 consecutive visits and nest sites were only visited after the 

female was located away from the nest for ≥ 2 days during incubation or ≥ 1 day after expected 

hatch date. 

Once the female departed the nest, we classified nest fate as successful (≥1 chick produced), 

failed, depredated, or abandoned.  Nests were considered abandoned if eggs were cold and 

unattended for >5 days.  Nests were considered failed if the eggs were destroyed by flooding, 
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trampling by livestock, or construction equipment.  Nests were considered depredated if the 

entire clutch disappeared before the expected date of hatching, or if eggshell and nest remains 

indicated that the eggs were destroyed by a predator. When a predation event occurred, the egg 

remains were evaluated and the area was searched for predator sign.  For successful nests, 

hatchability was calculated as the proportion of the total clutch that hatched and produced chicks.  

Eggs that failed to hatch were opened to determine stage of development and possible timing of 

embryo failure.   

Successful broods were relocated ≥3 times/week until failure. Pre-fledging brood survival was 

estimated by conducting flush counts between 14 and 16 days post hatch. Fledging was 

considered to occur at 14 days post hatch because at that point chicks are able to thermoregulate 

and are capable of weak flights (Pitman et al. 2006). Flush counts were conducted at dawn when 

chicks were close to radio-marked females to determine the number of surviving chicks in the 

brood. After females were flushed, the area was systematically searched and the behavior of the 

female observed to assess whether chicks were present but undetected. For counts of 0 chicks, 

the brood female was flushed again the following day to be certain no chicks remained in the 

brood. Broods were considered successful if ≥ 1 chick survived until fledging at 14-d post-hatch 

(Pitman et al. 2006). Flush counts were repeated at 14, 30, 45, and 60 days post-hatch or until we 

were confident that no chicks remained with the female.  

We monitored radio-marked females ≥3 times per week to estimate survival. Transmitters were 

equipped with a mortality switch that activated after 6–8 hours of inactivity. Once the mortality 

switch activated, transmitters were located and the area searched to determine probable cause of 

death. Mortality events were classified as either predation, hunter, other, or unknown. Predation 

mortalities were further identified as either mammal, avian, or unknown predator. A mortality 

event was classified as mammalian predation if bite marks, chewed feathers, or mammalian 

tracks were present. Mortality was determined to be avian predation if the carcass had been 

decapitated and/or cleaned of the breast muscle with no bite marks, or if the feathers had been 

plucked. If there were conflicting signs of mortality, the event was classified as unknown 

predation. Females were censored from the study if their collars were found with no sign of 

death or if they could not be located for ≥2 months. 

We evaluated habitat conditions at each nest and brood flush site within 3 days of hatching or 

expected hatch date in the case of failure. We recorded visual obstruction readings (VOR) at the 

nest bowl and at four points 6 m from the nest in each cardinal direction. At each point, VOR 

was measured in each cardinal direction from a distance of 2 m and a height of 0.5 m using a 

Robel pole (Robel et al. 1970). We estimated non-overlapping vegetation cover (percent new 

grass, residual grass, forbs, shrubs, bare ground, and litter) at 12 subsampling locations within 6 

m of the nest using a 20 × 50 cm sampling frame (Daubenmire 1959). At each subsampling plot, 

we measured the heights of new grass, residual grass, forbs, and shrubs. We also estimated shrub 

cover using the line-intercept method, recording the species, height, and length of each shrub 

intersecting the transect. For nests, we conducted parallel sampling at randomly selected points 

within a study area defined by a minimum convex polygon placed around the leks of capture and 

buffered to 2 km. For broods, we conducted parallel sampling at paired points in a randomly 

determined direction and distance (maximum of 250 m) from each flush location to represent 

available habitat within the average daily distance traveled by broods (Goddard et al. 2009). 

Random points that fell within unsuitable habitat (i.e., water, cultivation) or were located on 

properties to which we did not have access were replaced. 
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We also measured habitat conditions at the home range scale (500 ha, based on estimated home 

range sizes of sharp-tailed grouse during the breeding season, see below) under the assumption 

that the home range contained the resources utilized by a female during the nesting season. The 

home range area was defined as a circular plot with a 1,300-m radius centered on each nest, 

brood, and random location. We calculated habitat variables at the home range scale using 

remotely sensed data and ArcMap 10.4. We included road datasets for both Montana and North 

Dakota and calculated the distance to paved and gravel roads from the nest bowl (Montana State 

Library, North Dakota GIS Hub Data Portal). Paved roads, including state highways, had higher 

traffic volumes and were assumed to represent a different level of disturbance than gravel roads. 

We also included the locations of oil pads which represented another form of disturbance in the 

study area and calculated the distance to the nearest oil pad from the center of each home range. 

Landcover analyses utilized the 30 m resolution LANDFIRE data depicting vegetation type 

(LANDFIRE 2013).  We measured the distance from the center of each home range to the 

nearest patch of non-grassland habitat. In addition, we used the Patch Analyst Extension in 

ArcMap to calculate the proportion of grassland, the density of edge habitat, and grassland shape 

complexity.  

We collected stocking information from cattle producers for every pasture in which radio-

marked sharp-tailed grouse were located. For each pasture, we recorded the type of animal 

(cow/calf pairs, heifers, bulls, or horses), number of head, and the dates when animals were in 

the pasture. We calculated the following grazing management variables: grazing system (rest-

rotation, summer rotation, season-long), stocking rate (AUM ha-1), stocking intensity (AU ha-1), 

stocking duration (in months), and season of stocking (growing season [May—July], post-

growing season [August—November], winter [December—April], or rest [no grazing for entire 

year]). 

We used field data to estimate eight demographic parameters related to fecundity for sharp-tailed 

grouse (Table 1). Some of these parameters, including clutch sizes and chicks per egg laid 

(CPE), can be estimated directly from field data. However, other parameters are observed 

imperfectly. Nests are not observed from the initiation date and nests that fail before discovery 

must be considered to make population-level inferences. To account for imperfect observation, 

we used the nest survival model in Program MARK to calculate maximum likelihood estimates 

of daily nest survival (NSURV) following the methods described below.  

Nesting rate (NEST) was calculated as the percentage of females that attempted a nest. The 

probability of renesting (RENEST) was calculated as the number of observed renesting attempts 

divided by the number of unsuccessful first nests minus the number of females that had first 

nests but were unavailable to renest. A hen was considered unavailable if she was killed during 

the first nest attempt or was not relocated after the failure of a first nest attempt. Initial brood size 

was determined by the number of chicks that were known to hatch based on nest observations. 

Brood success (BSURV) was calculated as the proportion of broods that successfully fledged ≥1 

chick. Fledging success (FPC) was calculated as the proportion of chicks that survived until 

fledging among successful broods. Broods were included in the easement category if >70% of 

brood locations were within the easement boundaries, in the reference category if >70% of 

locations were in the reference area, and in the category “both” if they split their time between 

the two areas.  

Fecundity (F), or the number of female fledglings produced per female, is expressed as a 

function of these parameters using the following equation: 
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𝐹 = [(𝑁𝐸𝑆𝑇 ∗ 𝐶𝑆1 ∗ 𝑁𝑆𝑈𝑅𝑉1) + [(1 − 𝑁𝑆𝑈𝑅𝑉1) ∗ 𝑅𝐸𝑁𝐸𝑆𝑇 ∗ 𝐶𝑆2 ∗ 𝑁𝑆𝑈𝑅𝑉2]] ∗ 𝐶𝑃𝐸

∗ 𝐵𝑆𝑈𝑅𝑉 ∗ 𝐹𝑃𝐶 ∗ 0.5 

Bootstrapping procedures were used to calculate 85% confidence intervals for fecundity 

estimates by randomly drawing from the underlying distributions of input parameters (McNew et 

al. 2012). 

Nest success is defined as the probability of a nest producing ≥1 chick, whereas nest survival 

accounts for potential losses of nests before discovery. We constructed nest survival models 

using the RMARK package in Program R to calculate maximum likelihood estimates of daily 

nest survival and evaluate the effects of habitat conditions and management variables on daily 

nest survival during a 77-d nesting period during 28 April – 12 July (White and Burnham 1999, 

Dinsmore et al. 2002). Before fitting models, we examined correlations for each pair of variables 

and if a pair was highly correlated (r ≥ 0.5, p < 0.05), we used single-factor models to determine 

which of the two variables accounted for the largest proportion of variation in daily nest survival. 

We considered the variable with the lowest model deviance to be the primary variable to 

consider in subsequent analyses. 

We evaluated nest survival models at both the habitat and management level and compared 

model sets using the criteria described above. For the habitat-level analysis, underlying effects 

included variables of nest attempt, female age, female condition, flushing effect, daily 

temperature, and three precipitation variables compared to a null model of constant daily nest 

survival (Goddard and Dawson 2009). Female condition was calculating by regressing body 

mass against the length of the wing chord using the reduced major axis method (Green 2001). 

Precipitation variables included daily precipitation with a 1-day time lag, growing season 

precipitation from the previous year (total precipitation from previous April to June), and 

available precipitation from that year (total precipitation from October to May). We then selected 

the most parsimonious models at each of the different spatial scales (nest- and home range level) 

and assessed them in the final candidate model set. The management-level analysis included all 

the models evaluated in the nest site selection analysis (described above), plus a model 

examining the effect of stocking density while the nest was active. Top variables from both the 

habitat- and management-level analyses were then combined in a final candidate model set to 

evaluate relative effects on nest survival. 

We also developed a separate set of candidate models to examine the effects of grazing variables 

on nests within the rest-rotation pastures (n=57) and evaluate effects on nest survival of the 

different treatments within the system (grazed during the growing season, grazed post-growing 

season, rested entire year).  

Overall nest survival for precocial species is the probability that a nest will survive the entire 

nesting period, defined as the mean laying plus incubation interval for grouse at our study sites 

(37-d). We calculated the overall nest survival probability with parametric bootstrapping, using 

the beta estimates and variance-covariance matrix from the top model in the nest survival 

analysis. Variance of overall nest survival was estimated with the delta approximation (Powell 

2007).  The average duration of incubation period (27-d) was determined from observations of 

our sample of successful nests and from previous work (Connelly et al. 1998). 

Survival.— We calculated cumulative breeding season survival of radio-marked females 

using staggered entry Kaplan-Meier models with package survival in Program R (version 3.5.1, 

R Foundation for Statistical Computing, Vienna, Austria). We created weekly encounter histories 
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for each female for the 5-month period from 15 March to 15 August and encounter histories 

included the week of entry, week of exit, and event (0 = survived, 1 = mortality). We excluded 

females that died within a week of capture (n = 6) to account for any bias that might be due to 

capture stress. Data were both left- and right-censored to account for the staggered entry of birds 

into the sample and the loss of birds that left the study area (n = 9). Some females were 

monitored in multiple years, so we modeled individual identity as a random effect using the 

‘cluster’ function. We first tested whether the assumption of proportional hazards was met and 

then included an interaction with time for covariates for which the assumption was not met (Fox 

2002). We used Cox proportional hazards models to evaluate differences in breeding season 

survival among years, female age (second-year vs. after second-year), and grazing system (rest-

rotation, summer rotation, season-long). For females with ≥ 30 locations (Seaman et al. 1999), 

we calculated the proportion of each grazing system within a female’s 50% kernel home range 

and assigned a grazing system based on the system containing ≥ 60% of the home range. To 

calculate 50% home ranges, we used the fixed kernel method (Worton 1989) with the default 

smoothing parameter using the adehabitatHR package in Program R. For females with < 30 

locations (28% of monitored females), we assigned a grazing system based on the system with 

the majority (≥ 60%) of that individual’s locations. Females for which one grazing system did 

not account for ≥ 60% of either the 50% kernel home range or locations were excluded from 

analyses.  

We calculated cumulative survival rates of radio-marked females for the 7-month non-breeding 

season separately using staggered entry Kaplan-Meier models with monthly encounter histories 

for each female for the period from September through March. We used the ‘cluster’ function to 

model individual identity as a random effect to account for females monitored in multiple years. 

Similar to analyses of breeding season survival, we used Cox proportional hazards models to 

evaluate differences in non-breeding season survival among years and female age (second-year 

vs. after second-year). Data for the non-breeding season was collected on a monthly basis, which 

precluded analyses evaluating differences in non-breeding season survival among grazing 

system. We used estimates of survival during the breeding and non-breeding seasons to calculate 

annual survival and variance of overall survival was estimated with the delta approximation 

method (Seber 1982).   

For both breeding and non-breeding season survival, we compared models using Akaike’s 

Information Criterion adjusted for small sample sizes (AICc) and model selection was based on 

both minimization of AICc and AICc weights (wi; Burnham and Anderson 2002). Parameters 

were considered uninformative if ΔAICc < 2.0 for models that differed by a single parameter or 

if 85% confidence intervals overlapped 1 for hazard ratios (Arnold 2010). The effects of year, 

female age, and grazing system are reported as hazard ratios (HR, eβ), where the ratio equals 1 if 

there is no difference in the risk of mortality among strata.  

We calculated hazard functions to evaluate seasonal patterns of mortality. We used the 

smoothing splines functions in package gss in Program R to calculate hazard functions based on 

weekly survival data (DelGiudice et al. 2006). Hazard functions assess the instantaneous risk of 

mortality in each week given that an individual had survived to that point. To avoid overfitting 

splines, we used the default value for the smoothing parameter. We calculated separate hazard 

functions for females in each of the three grazing systems to evaluate the effects of grazing 

management on seasonal patterns of mortality risk.  
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We used Andersen-Gill models for survival to model the effects of habitat selection on mortality 

risk during the breeding season (Andersen and Gill 1982). For these models, we formulated 

another set of encounter histories for each female for the 5-month breeding season (15 March–15 

August). Each encounter history is structured so that the entry represents the interval between 

successive relocations of an individual and individual females have multiple encounter histories 

in the dataset. Encounter histories included the day of entry, day of exit, length of the interval, 

the animal’s fate at the end of the monitoring interval (0 = right-censored, 1 = mortality), and the 

covariates representing habitat features associated with each relocation event as measured at the 

end of the interval (Johnson et al. 2004). Mortality events were likely to occur at the end of the 

interval and previous studies found no bias regarding when habitat features were measured 

within a relocation interval (Johnson et al. 2004). We fit the Andersen-Gill formation of the Cox 

proportional hazards model using the ‘coxph’ function in package survival in Program R and 

evaluated the spatial variation in risk factors for females relative to time-varying individual 

features, landcover, anthropogenic disturbance and rangeland management. Before fitting 

models, we examined correlations for each pair of explanatory variables (r ≥ 0.5; Supporting 

Information). We then used the ‘cox.zph’ function to test the assumption that hazards vary 

linearly across predictor variables (Fox 2002). 

We first examined single-variable models with habitat and individual time-varying covariates 

predicted a priori to affect grouse mortality risk. We evaluated mortality risk relative to time-

varying individual features, weather, anthropogenic disturbance, and landcover. Individual 

features included categorical variables representing whether a female had either an active nest or 

a brood. We obtained daily precipitation data from the National Oceanic and Atmospheric 

Association (NOAA) station in Sidney, MT, and calculated the total amount of precipitation 

during each monitoring interval to capture variation in environmental conditions. We digitized 

the locations of oil pads and roads, both forms of anthropogenic disturbance in our study area, 

and calculated the distance to the nearest oil pad or road from each point. Landcover analyses 

utilized the 30-m resolution LANDFIRE data depicting vegetation type (LANDFIRE 2013). We 

used the Patch Analyst Extension in ArcMap to calculate the density of edge habitat (total 

landcover edge length / polygon area) and the amount of cropland within a range of buffer 

distances (30, 75, 125, 200, 500, 750, 1000, 1300 m). A habitat patch edge was defined as an 

abrupt change between any of the three main habitat types (grassland, wooded draws, and 

cropland) and edge density was defined as the amount of patch edge relative to the area within a 

given buffer distance. In our study area, cropland consisted primarily of dryland wheat. We used 

an information-theoretic approach to first choose the spatial scale that best represented the 

relationship between mortality risk and each habitat variable. 

Our final candidate model set included 24 models that estimated the additive effects of 3 grazing 

management variables in combination with the important habitat and individual covariates based 

on preliminary analyses. Rangeland management variables included grazing system and stocking 

rate (AUM ha-1) during both the current and previous year. We compared Andersen-Gill models 

using AICc and based model selection on both the minimization of AICc (ΔAICc < 2 from best-

fit model) and AICc weights (Σwi > 0.3). Models that differed from the top model by a single 

parameter with ΔAICc < 2.0 or whose 85% confidence intervals overlapped zero were 

considered uninformative (Arnold 2010). 

Results 
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Mean overall lek attendance was 11.7 birds (average of 9.5 males and 2.2 females) during the 

study period. Lek attendance declined at all but one lek in 2018, with overall attendance at 

individual leks declining 33-57% compared to previous years, with the most marked declines 

occurring in male attendance. Female attendance occurred significantly later than in previous 

years, with the first female observed on 10 April, which was about 2 and 3 weeks later than in 

2017 and 2016, respectively. Female attendance also peaked later in the year, with the majority 

visiting between 24 and 27 April.  

We captured a total of 757 sharp-tailed grouse at leks during 2016–18, including 431 individuals 

(211 females, 220 males; Table 2). We fitted 174 females (102 yearlings, 72 adults) with radio-

transmitters. 

Fecundity.— We located 188 grouse nests in treatment pastures (147 first nests, 41 

renesting attempts) laid by 128 individual females during 2016–2018 (Fig. 1).  Nesting 

frequency (± SE) was 1.00, while the probability of renesting after first nest failure was 0.61 ± 

0.10. Hatch rate of eggs (± SE) was 91.3 ± 2.4%. Mean clutch size for all nest attempts was 10.2 

± 0.59 eggs. Mean clutch size for first nest and renests was 11.1 ± 0.57 and 9.6 ± 0.60 eggs, 

respectively.  

Overall nest survival varied by year and ranged from 0.29 ± 0.06 in 2016 to 0.48 ± 0.07 in 2018. 

Preliminary analyses suggested that visual obstruction averaged across the 6-m radius plot best 

predicted daily nest survival and that a pseudo-threshold model best represented the relationship 

between visual obstruction and nest survival, so only models with the natural log transformation 

of average VOR were included in analyses (see Appendix C; Milligan 2019). At the nest-level, 

VOR was in the top four models, accounting for 91% of the relative support of the data. 

Percentage forb, residual grass, and new grass in combination with VOR each received some 

support (ΔAICc = 0.50 – 1.83, wi = 0.13 – 0.26) and so were examined in the final model set. At 

the home-range level, distance to road received the most support (ΔAICc = 0, wi = 0.35) and 

proportion grassland marginally improved model fit compared to the null model (ΔAICc = 1.36, 

wi = 0.18), so both variables were included in the final analysis. In the final candidate model set, 

the model that included VOR, percentage forbs and proportion grassland received the most 

support (ΔAICc = 0, wi = 0.43, Table 3). VOR was in all twelve top models, accounting for 

100% of the relative support of the data, while proportion grassland accounted for 79% of 

relative support. Confidence intervals for VOR, proportion grassland, and distance to road did 

not overlap zero, indicating significant effects (Fig. 2). Daily nest survival increased with 

proportion grassland (β = 0.16 ± 0.10), distance to road (β = 0.21 ± 0.11), and VOR up to a 

threshold of 20–30 cm, as represented by the pseudo-threshold model (β = 0.29 ± 0.11).  

In the management-level analysis, stocking density while the nest was active was the best 

predictor of daily nest survival, accounting for 66% of the relative support of the data (Table 3), 

with survival increasing with stocking density (β = 0.30 ± 0.14, Fig. 3). Confidence intervals for 

stocking rate in both the current and previous year overlapped zero (stocking rate in cur. yr: -

0.17–0.06; stocking rate in prv. yr: -0.18–0.25), but there was also evidence for an effect of year 

and rest-rotation grazing, with confidence intervals that did not overlap zero. Daily nest survival 

was higher in both 2017 (β = 0.36 ± 0.25) and 2018 (β = 0.73 ± 0.28) than in 2016 and was lower 

in rest-rotation pastures compared to season-long pastures (β = -0.44 ± 0.27). Overall nest 

survival (± SE) was 0.48 ± 0.07 in season-long pastures, 0.38 ± 0.06 in summer rotation pastures, 

and 0.32 ± 0.06 in rest-rotation pastures (Fig. 4). In the full analysis, the model with the most 

support included VOR, proportion grassland and stocking density while the nest was active 
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(ΔAICc = 0, wi = 0.90, Table 3), with confidence intervals for all three variables not overlapping 

zero, suggesting significant effects.  

For nests within the rest-rotation system (n=57), there was no evidence for an effect of the timing 

of grazing (grazed during the growing season, grazed post-growing season, or rested entire year) 

on nest survival (Table 4). Estimates of overall nest survival in the three treatments overlapped 

entirely (Fig. 4). 

We monitored 95 broods to estimate survival and document habitat use (Table 5). Twenty-two 

broods spent the majority of the time (>60% of brood locations) in rest-rotation pastures, 30 

spent the majority of time in summer rotation pastures, 29 spent the majority of time in season-

long pastures, and 14 split time between multiple grazing systems. Brood success, calculated as 

the proportion of broods fledging ≥1 chick to 14-d of age, was 0.59 ± 0.10, 0.80 ± 0.07, 0.66 ± 

0.09, and 0.43 ± 0.13 for broods located on the rest-rotation, summer rotation, season-long and 

multiple systems, respectively. Of broods that survived to fledging, the proportion of chicks that 

survived was 0.55 ± 0.08, 0.54 ± 0.06, 0.59 ± 0.07, and 0.32 ± 0.09 for broods located on the 

rest-rotation, summer rotation, season-long and multiple systems, respectively.  

We determined that 28 females were killed by predators: 15 and 8 by mammalian and avian 

predators, respectively, and 5 by an unknown predator. An additional 2 females were hunter 

mortalities. One female was right censored from the study when the transmitters was found with 

no sign of death. An additional 4 females left the study area within 2 weeks of captured and were 

right censored after they could not be relocated for more than 2 months. Two females moved 

onto land to which we do not have access and so were monitored solely for survival.  

Eight demographic parameters were estimated using field data (Table 6). Estimated fecundity, 

the number of female fledglings produced per female per year, was 1.14 (95% CI = 0.82 – 1.53) 

female fledglings produced per female.  

Survival.— We evaluated survival for 153 female sharp-tailed grouse, some of which 

were monitored in multiple years, resulting in 180 bird-years (2016: n = 55, 2017: n = 64, 2018: 

n = 61). Of the 180 bird-years, 66 represented females primarily using the rest-rotation system, 

60 using the summer rotation system, 46 using the season-long system, and 8 splitting time 

among multiple grazing systems. Overall, 86% of mortality events were due to predation, with 

the remaining mortality events due to hunter harvest (8%) or unknown causes (6%).  

The assumption of proportional hazards for breeding season survival was not met for either year 

or grazing system, so models that included those variables also incorporated an interaction with 

time. Overall survival (± SE) during the 5-month breeding season for female sharp-tailed grouse 

across all years and grazing systems was 0.65 ± 0.04, which corresponds to a monthly survival 

rate of 0.91 ± 0.005. Despite significant annual variation in precipitation, breeding season 

survival did not differ significantly among the 3 years of study (baseline: 2016; Cox proportional 

HR for 2017 = 0.72, 95% CI = 0.07–7.02, Z = -0.29, P = 0.78; Cox proportional hazards HR for 

2018 = 5.7, 95% CI = 0.52–63.74, Z = 1.42, P = 0.16). There was also no difference in breeding 

season survival between female age classes (baseline: second-year; Cox proportional hazards HR 

= 1.19, 95% CI = 0.72–1.96, Z = 0.69, P = 0.49), or among grazing systems (baseline: season-

long; Cox proportional hazards HR for summer-rotation = 1.13, 95% CI = 0.15–8.82, Z = 0.12, P 

= 0.90; Cox proportional hazards HR for rest-rotation = 1.49, 95% CI = 0.17–13.29, Z = 0.36, P 

= 0.73). Although there was weak evidence for an effect of age and year on survival (Table 7), 

confidence intervals for both age groups (second-year: 0.524-0.735, after second-year: 0.558-
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0.757) and all 3 years (2016: 0.540-0.793, 2017: 0.540-0.778, 2018: 0.545-0.785) entirely 

overlapped. Breeding season survival was similar across grazing systems (Fig. 5).  

In contrast, non-breeding season survival differed among the 3 study years (Table 7; baseline: 

2016; Cox proportional HR for 2017 = 2.93, 95% CI = 1.30–6.58, Z = 2.59, P = 0.009; Cox 

proportional hazards HR for 2018 = 1.38, 95% CI = 0.52–3.67, Z = 0.65, P = 0.52), with non-

breeding survival in 2017 significantly lower than in either 2016 or 2018. Overall survival during 

the 7-month non-breeding season was 0.78 ± 0.07 in 2016, 0.43 ± 0.08 in 2017, and 0.71 ± 0.08 

in 2018, with monthly survival rates of 0.97 ± 0.007, 0.89 ± 0.005, and 0.95 ± 0.008 in 2016, 

2017, and 2018, respectively. Annual survival for the population was 0.50 ± 0.05 in 2016, 0.28 ± 

0.04 in 2017, and 0.46 ± 0.05 in 2018.  

We calculated hazard functions for females that used the rest-rotation, summer rotation, and 

season-long systems to evaluate potential differences in seasonal patterns of mortality risk 

among the different grazing systems. Mortality risk peaked in early May during the nesting 

period in all grazing systems, but seasonal patterns differed across grazing systems (Fig. 6), 

although error estimates were large so differences should be treated with caution. The increase in 

mortality risk during the nesting period was greatest in the rest-rotation system, with a 61–82% 

higher risk of mortality in the rest-rotation compared to season-long and summer rotation 

systems, respectively (Fig. 6). However, there was an additional peak in mortality in both 

season-long and summer rotation systems in late summer that did not occur in the rest-rotation 

system, with the risk of mortality 3–4 times higher in the season-long and summer rotation 

systems, respectively, compared to the rest-rotation system (Fig. 6). The difference in peaks of 

mortality risk among systems translated to no effect of grazing system on cumulative survival 

calculated for the entire breeding season (Fig. 5).  

To evaluate the spatial covariates influencing mortality risk during the breeding season using 

Andersen-Gill models, we pooled females from all years and age-classes, which included data 

from 164 females across 192 bird-years, encompassing 6,783 locations, and included locations 

from individuals that were not monitored for the entire breeding season and so were not used in 

the previous analyses. The assumption of proportional hazards was met for a global model 

including all covariates. Preliminary analyses suggested that the edge density within 75 m and 

the proportion cropland within 1,300 m best predicted mortality risk (Milligan 2019). Of the 

single-variable preliminary models, edge density within 75 m, the proportion cropland within 

1,300 m, and whether a female had an active brood all improved model performance compared 

to the null model and so were included in the full candidate model set with grazing management 

variables. There was no evidence for an effect of anthropogenic disturbance, including either oil 

pads or roads. In the full model set, the top model contained the effect of cropland within 1,300 

m, which accounted for 49% of the relative support of the data across all models (Table 8). The 

risk score increased with the amount of cropland within 1,300 m of a bird’s location (β = 0.02 ± 

0.02; Fig. 7). However, there was considerable model uncertainty and the model containing the 

effect of cropland represented only a modest improvement over the null model (Table 8). Effects 

relative to livestock grazing management were not supported (Table 8). 
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Objective 2: Investigate impacts of rest-rotation grazing on sharp-tailed grouse home 

ranges, movements and habitat selection. 

Accomplishments 

All field work related to Objective 2 were completed during 2016-2018. Efforts in 2019 

analyzing data and writing publications of our work.  Below we summarize effort and results for 

the entire 4-year study.  Comprehensive results are also reported in: 

Milligan, M.C. 2019.  Effects of grazing management on sharp-tailed grouse ecology in mixed-

grass prairies. Dissertation, Montana State University, Bozeman, Montana, USA. 

Methods 

Radio-marked females were located by triangulation or homing ≥ 3 times/week during the 

breeding season (15 March – 15 August). Coordinates for triangulated locations were calculated 

using Location of a Signal software (LOAS; Ecological Software Solutions LLC, Hegymagas, 

Hungary) and examined for spatial error. All locations with low estimation precision (> 200 m 

error ellipse) were discarded.  

We analyzed location data for the breeding season (15 March – 15 August) and defined a home 

range as the space an individual needed to forage, reproduce, and survive. Previous studies have 

found that small sample sizes can bias home range estimates (Seaman et al. 1999), so analyses 

were restricted to birds with ≥ 30 locations and ≥ 20 locations not associated with a nest site. We 

used the fixed kernel method [56] with the default smoothing parameter to calculate home ranges 

as the 95% utilization distribution for the breeding season (April – August) using the 

adehabitatHR package in Program R. We also calculated centroids for each home range by 

estimating the 1% volume contour of each home range and using the geographic center of that 

contour as the centroid.  

We used linear models to evaluate the relationship between home range size and the effects of 

year; nest outcome; density of edge habitat within the home range; proportion grassland within 

the home range; proportion of each grazing system contained within the home range; mean 

stocking rate within the home range; and distance to nearest lek, grassland patch edge, road, and 

oil pad at the home range centroid. We calculated the proportion of grassland and edge density 

within each home range in ArcGIS and measured the distance from each centroid to the nearest 

lek, grassland patch edge, road and oil pad in Program R 3.5.1. Habitat classifications utilized the 

30-m resolution LANDFIRE data depicting landcover type (LANDFIRE 2013). A habitat patch 

edge was defined as an abrupt change between any of the three main landcover types (grassland, 

wooded draws, and cropland) and edge density was defined as the amount of patch edge relative 

to the home range size. We digitized the location of oil pads and roads in the study area and 

roads were defined as paved and dirt state and county roads and did not include ranch two-tracks. 

We collected information on grazing management for every pasture in the study area by 

interviewing landowners to determine the number and class of animals stocked and the timing of 

stocking to determine the grazing system (rest-rotation, summer rotation, season-long) and 

stocking rate (AUM ha-1) during the current and previous year. Stocking rate is a measure of the 

number of animals in a pasture during the entire grazing season. As most females used more than 

one grazing system, we calculated the proportion of each individual home range containing the 

three different grazing systems and assigned a female to the grazing system containing ≥ 60% of 

the home range. Females were considered to use multiple systems if no one system accounted for 
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≥ 60% of their home range and were not included in analyses evaluating the effect of grazing 

system.  

We examined second-order habitat selection, or the selection of habitat for an individual’s home 

range within the larger study area, using the adehabitat package in Program R 3.5.1 to conduct 

compositional analysis of used versus available habitat (Johnson 1980, Aebischer et al. 1993). 

Available habitat was defined as the home range calculated for locations of all radio-marked 

females in a given year, whereas used habitat was measured within each individual home range. 

We used compositional analysis to compare used versus available landcover types and grazing 

systems separately. Landcover classifications were based on LANDFIRE data and were grouped 

into grassland, wooded draws, cropland, and other, which was composed primarily of ruderal 

grasslands (LANDFIRE 2013).  

To evaluate third-order habitat selection, or the selection of habitat within individual home 

ranges, we used resource selection functions to compare used and available points following 

Design 3 of Manly et al. (2002). We identified nine landscape metrics a priori that could 

influence sharp-tailed grouse space use. Three of those metrics were related to rangeland 

management: grazing system and stocking rate (AUM ha-1) during either the current or previous 

year. Two landscape metrics represented anthropogenic disturbance, including both oil pads and 

roads, and we calculated the distance to each from both used and available points. Four 

additional landscape variables were related to landcover: % grassland, % wooded draws, % 

cropland, and the density of edge habitat (total landcover edge length / polygon area), which 

were based on the 30-m resolution LANDFIRE data depicting landcover type (LANDFIRE 

2013). We used FRAGSTATS 4.2 (McGarical et al. 2012) to conduct a moving window analysis 

to calculate the proportion of each landcover type and the density of edge habitat within 8 buffer 

distances (30, 75, 125, 200, 500, 750, 1000, 1300 m) to evaluate the spatial grain for each 

landcover type that best predicted grouse space use (Laforge et al. 2015). We chose grain sizes to 

reflect a continuum of scales, with 30 m representing the minimum size as imposed by our 

spatial data and 1,300 m approximating the average size of the breeding season home range of a 

female sharp-tailed grouse in our study area. A grain size of 200 m represents the average 

distance moved daily by female sharp-tailed grouse during the breeding season in our study. The 

remaining grain sizes represent intermediate distances between the minimum imposed by our 

spatial data and a grain size representing the average size of a breeding season home range.  

We conducted 1,000 simulations for each variable and each grain size of landcover variables to 

determine the number of available points required for coefficient estimates to converge 

(Northrup et al. 2013). Based on the simulations, available points were sampled at a 15:1 

available:used ratio within each individual bird’s home range to balance coefficient convergence 

and computational efficiency. For all models, we used generalized linear mixed models in a 

Bayesian framework with a logit-link and female ID as a random intercept to account for 

potential autocorrelation among sampling points (Gillies et al. 2006, Thomas et al. 2006). For the 

four landcover covariates, we first selected the grain size at which selection was the strongest for 

each, basing model selection comparing the 8 buffer distances on calculated leave-one-out 

information critierion (LOOIC) to identify a top model sensu Laforge et al. (2015). If error 

estimates overlapped for calculated LOOIC, we based model selection on calculated deviance 

information criteria (DIC) and considered > 5 DIC units to be a substantial difference in model 

fit (Thomas et al. 2006). 
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After assessing collinearity for each pair of explanatory variables (r ≥ 0.6) and selecting the 

variable with the most support based on calculated LOOIC and DIC, we then evaluated support 

for all management and landscape variables in a full model using indicator variables. Regression 

coefficients for each variable were the product of binary indicator variables and both continuous 

and categorical covariates and we used the posterior distributions of the indicator variables to 

identify the variables with high inclusion probability that were the most important predictors of 

habitat selection [64-66]. We assumed that all variables with high inclusion probability based on 

the posterior distributions of their indicator variables influenced habitat selection and variables 

with inclusion probabilities ≤ 0.25 were unimportant (Mutshinda et al. 2013). The posterior 

distributions of coefficients represented the relationship between habitat variables and the 

relative probability of selection within the defined home range. We calculated standardized 

coefficients of fixed effects to make population-level inferences about each habitat variable and 

improve model convergence. Coefficients with 95% credible intervals that did not overlap zero 

were considered important. We examined estimates of variability (σ2) for each predictor variable 

to determine the degree of variation in selection among individuals for specific habitat features 

(Indermaur et al. 2009).    

We fit models using Markov Chain Monte Carlo (MCMC) simulations with JAGS (version 

4.2.0, mcmc-jags.sourceforge.net, accessed Dec 2018) implemented via the ‘runjags’ package 

(Denwood 2006) in Program R 3.5.1 to approximate the posterior probability distribution of 

model parameters. Vague uniform or normal priors were used for all model parameters related to 

covariates and their measures of error (Kery 2010). Indicator variables were Bernoulli random 

variables and we placed a Beta(2,2) prior distribution on the inclusion probability of each 

indicator variable to represent no prior information about the importance of individual variables. 

We first identified the top spatial grain model for each landcover variable from 20,000 samples, 

thinned by a factor of 5, from 3 independent MCMC chains, after discarding 10,000 burn-in 

samples. Inference from the full model was based on a total of 50,000 samples, thinned by a 

factor of 5, from 3 independent MCMC chains, after discarding the first 100,000 burn-in 

samples. We assessed convergence and MCMC chain mixing visually and based on Gelman-

Rubin convergence statistics and considered sets of chains with no trends across trace plots and 

values < 1.1 converged (Gelman 2006). To perform posterior predictive checks, we calculated a 

Bayesian p-value as a goodness-of-fit measure that compares attributes of the observed data to 

that of data generated by the model (Gelman et al. 1996). 

Nest site selection.— We examined habitat and management variables influencing nest 

site selection in separate analyses using resource selection functions. Habitat variables were 

considered for their direct effect on nest site selection, while management variables were 

considered for potential indirect effects on vegetation structure as mediated through livestock 

grazing practices. Nests were considered used sites and, as we did not conduct searches for nests 

of unmarked grouse, random points were considered available following Design 2 of Manly et al. 

(2002), where availability is defined at the population level. For each analysis, we used 

generalized linear mixed models with the logistic link function, a binomial error structure, and 

female ID as a random effect to account for potential autocorrelation. Before fitting models, we 

examined correlations for each pair of explanatory variables (r ≥ 0.6) and if two variables were 

highly collinear, we used single factor logistic regression to determine which variable accounted 

for more of the variation in the data. All preliminary analyses are reported in the appendices. 

Models were compared using AICc and model selection was based on both minimization of 

AICc and AICc weights (wi). For the habitat-level analysis, we first evaluated underlying 
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variables, variables at the nest-site scale, and variables at the home-range scale independently 

and built a final candidate model set that included variables supported at each scale. Underlying 

variables included year, hen age, and nest attempt. Variables at the nest-site scale included VOR 

at the nest bowl and averaged within the 6 m radius plot, distance to grassland edge, and the 

percentage of shrubs, new grass, residual grass, forbs, and bare ground. Different functional 

relationships with VOR were examined, including linear, quadratic and natural log models (i.e., 

pseudo-threshold effects; Dugger et al. 2005; McNew et al. 2014). Variables considered at the 

home-range scale included the proportion of grassland habitat, density of edge habitat, grassland 

shape complexity (MSI), and distance to oil pad, road, or lek. We then selected the most 

parsimonious models at each of the different spatial scales (nest-site and home range level) and 

assessed them in the final candidate model set. In the management-level analysis, we evaluated 

all combinations of the effects of grazing system and stocking rate. We also evaluated additive 

and interaction models with year and either grazing system or stocking rate to assess whether a 

system-level effect was only apparent under certain annual conditions. Variables were 

considered significant if 85% confidence intervals did not overlap zero (Arnold 2010). Finally, 

we evaluated combinations of important variables from both the habitat- and management-level 

analyses into a final candidate model set to assess the relative importance of habitat and 

management variables. 

For the top RSF, we calculated the marginal and conditional R2 to evaluate the total variance 

explained by the model (Nakagawa and Schielzeth 2013). We validated the top RSF with a 

reserved data set of 39 randomly selected nests sites and 39 random points (20% of data; Boyce 

et al. 2002). The top model was used to calculate predicted RSF values for each nest in both the 

training and the test data sets. Raw RSF values were placed in 5 quantile bins representing an 

increasing likelihood of a point being classified as a nest site. We regressed the proportion of 

nests from the test data set in each bin against the proportion of nests from the training data set in 

each bin and evaluated good model fit based on Johnson et al. (2006). 

Results 

During the 2016–2018 breeding seasons, we collected a total of 7,178 locations and calculated 

142 home ranges for 118 individual females (40 in 2016, 53 in 2017, 49 in 2018). Home range 

size was estimated without bias relative to sampling effort (Milligan 2019). Mean breeding 

season home range size for all females was 489 ± 41 ha but varied from 58–3,717 ha (Table 9). 

Home range sizes were less variable within pastures managed with summer rotation grazing 

compared to those in other systems (Fig 8), but grazing system did not have a significant effect 

on average size of home ranges (Table 10). Density of edge habitat within the home range was 

the best predictor of home range size (Table 10) and was negatively related to the size of 

breeding season home ranges (β = -5.26 ± 1.48; Fig 9).  

At the second order, breeding season habitat use was ranked as follows: grassland = wooded 

draws >> other (primarily ruderal grasslands) >> cropland (Table 11), suggesting that females 

did not differentiate between grasslands and wooded draws with regards to preference but 

selected both habitat types over other habitats, including cropland. Females strongly selected for 

mixed grass prairie habitats, even though roughly 83% of the entire study area was composed of 

mixed grass prairie. Females strongly selected against cropland during the breeding season, even 

though only 4% of the study area was cropland. There was no evidence that selection of home 

ranges in relation to grazing system was different from random (p = 0.20), suggesting that 

females were not differentiating between pastures in the different grazing systems. 
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Within home ranges, preliminary analyses suggested that a grain size of 1,300 m for grassland, 

1,300 m for wooded draws, 500 m for cropland, and 1,000 m for edge density represented the 

scale of strongest female habitat selection (Milligan 2019). However, the proportion of grassland 

was correlated with both the proportion of cropland and the density of edge habitat (see 

Supporting Information), so only the variable of proportion grassland was used in the full model. 

In the full analysis, distance to road and the proportion of wooded draws within 1,300 m were 

the only supported covariates, with indicator values > 0.25 (Fig 10). Only distance to road had a 

95% credible interval that did not overlap zero (β = -0.047 ± 0.001), although differences in 

selection across the range of distances were small (Fig. 11). Furthermore, variability in selection 

as measured by σ2 for each predictor variable was high, indicating large differences in individual 

habitat selection (Fig. 12). A posterior predictive check suggested that the full model fit the data 

well, based on an estimated Bayesian p-value of 0.503. 

Nest site selection.— We located 188 grouse nests (147 first nests, 41 renesting attempts) 

laid by 128 individual females during 2016–2018. None of the underlying variables, including 

year, female age and nest attempt, improved model fit over the null model. Preliminary analyses 

suggested that visual obstruction at the nest bowl best predicted nest site selection and that a 

pseudo-threshold model best represented the relationship between visual obstruction and nest site 

selection, so only models with the natural log transformation of nest VOR were included in 

analyses (Milligan 2019). At the nest-level, nest site selection was best predicted by VOR at the 

nest bowl and the percentage of new grass, residual grass, and shrubs (ΔAICc = 0, wi = 0.61). At 

the home-range level, the model containing a measure of fragmentation (mean shape complexity 

or MSI) received the most support (ΔAICc = 0, wi = 0.56). In the final candidate model set, the 

model that included VOR at the nest bowl, the percentage residual grass, and MSI received the 

most support (ΔAICc = 0, wi = 0.61, Table 12). Confidence intervals for VOR, MSI, and 

proportion residual grass and shrubs did not overlap zero, suggesting significant effects (Fig. 13). 

Percent cover of both residual grass (β = 0.48 ± 0.17) and shrubs (β = 0.33 ± 0.20) had small but 

positive effects on the relative probability of selection, while selection decreased with increasing 

fragmentation or MSI (β = -0.50 ± 0.16). Visual obstruction at the nest bowl had the largest 

effect on the relative probability of selection (β = 11.45 ± 1.31), with selection increasing up to a 

threshold of 20–30 cm (Fig. 13).  

In the management-level analysis, models containing the linear effect of stocking rate from the 

previous year received the most support (wi = 0.51, Table 12), with 85% confidence intervals 

that did not overlap zero. The relative probability of selection declined with increasing stocking 

rates (β = -0.17 ± 0.10). However, in the full analysis, the model containing habitat variables 

(ΔAICc = 0, wi = 0.58) outperformed models with management-level variables (Table 12), with 

an evidence ratio for the model containing only habitat variables compared to the combined 

habitat and management model of 1.38. This suggests that grazing management was not an 

important predictor of nest site selection after controlling for other factors. 

The marginal and conditional R2 for the top model were both 0.97. Model validation based on 

linear regression suggested high predictive accuracy, with an intercept of 0 (95% CI: -0.02–

0.06), slope of 0.91 (95% CI: 0.76–1.06), and a high coefficient of determination (R2 = 0.87). 
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Objective 3: Develop a mechanistic understanding of the ecological effects of various 

grazing treatments with a focus on rest rotation grazing by examining abundance and 

space use of the grassland bird and mesopredator communities 

Project completed. Complete results are presented in previous Annual Progress Reports and the 

enclosed thesis:  

Vold, S. T. 2018. Effects of livestock grazing management on the ecology of grassland birds and 

their predators in a northern mixed-grass prairie ecosystem. Thesis, Montana State University, 

Bozeman, Montana, USA. 
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Table 1. Demographic rates estimated for sharp-tailed grouse. 

Demographic Rate Description 

Nesting rate (NEST) The probability of a female initiating a nest. 

Clutch size (CS) 
The final clutch size per nest. Estimates generated for both first 

(CS1) and renesting (CS2) attempts. 

Nest survival (NSURV) The probability of a nest producing ≥1 chick.  

Renesting rate (RENEST) 
The probability of a female initiating a replacement nest after 

failure of the first attempt 

Chicks per egg laid (CPE) 

The proportion of eggs laid that produced chicks, or the viability 

of the eggs; calculated only for successful nests (≥1 egg 

hatched). 

Brood survival (BSURV) 
The probability that ≥1 chicks survived to fledging at 14-d post-

hatch 

Fledglings per chick 

hatched (FPC) 

The proportion of hatched chicks that survived to fledging 

conditional upon brood survival 

 

 

 

 

Table 2. Total number of sharp-tailed grouse captured and radio-marked during the study, 2016-

2018. Easement refers to leks occurring in pastures managed with rest-rotation grazing. 

 Males Females New Radio-marked Females 

Easement 119 121 89 

Reference 101 90 85 

Total 220 211 174 
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Table 3. Support for models predicting sharp-tailed grouse nest survival in 2016-18 in the 

three analyses examining habitat-level variables, management-level analyses and the 

combined analysis. The number of parameters (K), AICc values, ΔAICc values, model 

weights (wi) and deviance are reported. VOR is visual obstruction averaged across the 6 m 

radius vegetation plot. 

Model K AICc ΔAICc 
AICc 

wi 
Deviance 

Habitat Analysis     

ln(VOR) + %Forb + Prop. Grassland 4 747.5 0 0.43 739.49 

ln(VOR) + Prop. Grassland 3 748.94 1.44 0.21 742.94 

ln(VOR) + %Residual + Prop. 

Grassland 
4 750.94 3.44 0.08 742.93 

ln(VOR) + %New Grass + Prop. 

Grassland 
4 750.94 3.44 0.08 742.93 

ln(VOR) + %Forb + Dist. to Road 4 751.64 4.14 0.05 743.63 

ln(VOR) + Dist. to Road 3 751.71 4.21 0.05 745.7 

ln(VOR) 2 753.59 6.09 0.02 749.59 

ln(VOR) + %New Grass + Dist. to 

Road 
4 753.62 6.12 0.02 745.61 

ln(VOR) + %Residual + Dist. to Road 4 753.69 6.19 0.02 745.68 

ln(VOR) + %Forb 3 754.09 6.59 0.02 748.08 

ln(VOR) + %Residual 3 755.41 7.91 0.01 749.41 

ln(VOR) + %New Grass 3 755.42 7.92 0.01 749.42 

Dist. to Road 2 757.17 9.68 0 753.17 

Prop. Grassland 2 758.53 11.03 0 754.53 

Null 1 758.94 11.44 0 756.94 

Management Analysis    

Stocking Density 2 755.05 0 0.24 751.05 

Stocking Rate (cur. yr.) + Year + 

Stocking Density 
5 755.1 0.05 0.23 745.08 

Stocking Rate (prv. yr.) + Year + 

Stocking Density 
5 755.56 0.51 0.19 745.54 

Grazing System + Year 5 757.17 2.12 0.08 747.15 

Stocking Rate (cur. yr.) + Year 4 757.2 2.15 0.08 749.19 

Stocking Rate (prv. yr.) + Year 4 757.3 2.25 0.08 749.29 

Null 1 758.94 3.89 0.03 756.94 

Grazing System 3 760.18 5.13 0.02 754.17 

Stocking Rate (cur. yr.) 2 760.49 5.44 0.02 756.49 

Stocking Rate (prv. yr.) 2 760.9 5.85 0.01 756.89 

Stocking Rate (cur. yr.) + Grazing 

System 
4 761.85 6.8 0.01 753.84 
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Stocking Rate (prv. yr.) + Grazing 

System 
4 762.16 7.11 0.01 754.14 

Grazing System * Year 9 763.24 8.19 0 745.19 

Stocking Rate (cur. yr.) * Grazing 

System 
6 765.83 10.78 0 753.81 

Stocking Rate (prv. yr.) * Grazing 

System 
6 765.84 10.79 0 753.82 

Full Analysis     
ln(VOR) + Prop. Grassland + Stocking 

Density 
4 743.56 0 0.9 735.55 

ln(VOR) + Prop. Grassland 3 748.94 5.38 0.06 742.94 

ln(VOR) + Prop. Grassland + Grazing 

System + Year 
7 749.82 6.26 0.04 735.79 

Stocking Density 2 755.05 11.49 0 751.05 

Grazing System + Year 5 757.17 13.61 0 747.15 

Null 1 758.94 15.38 0 756.94 
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Table 4. Support for candidate models predicting sharp-tailed grouse nest survival in 2016–18 

within the rest-rotation system. Treatment represents whether the pasture was grazed during 

the growing season, post-growing season, or rested. The number of parameters (K), AICc 

values, ΔAICc, model weights (wi) and deviance are reported.  

Model K AICc ΔAICc AICc wi Deviance 

Null 1 251.86 0 0.61 249.85 

Stocking Rate 2 253.72 1.86 0.24 249.7 

Treatment 3 255.42 3.57 0.1 249.4 

Treatment + Stocking Rate 4 257.43 5.58 0.04 249.39 

Treatment x Stocking Rate 6 261.46 9.61 0.01 249.39 

 

 

 

 

 

 

 

Table 5. Sharp-tailed grouse brood survival (± SE) to fledging at 14-d post hatch for broods 

that spent the majority of time in pastures managed with each grazing system in 2016-2018. 

Brood success is the proportion of broods that successfully fledged ≥1 chick. Fledging rate is 

the proportion of chicks within broods that survived to fledging at 14 days. 

  Number of Broods Brood Success  Fledging Rate 

Rest-

rotation 
22 0.59 ± 0.10 0.55 ± 0.08 

Summer 

rotation 
30 0.80 ± 0.07 0.54 ± 0.06 

Season-

long 
29 0.66 ± 0.09 0.59± 0.07 

Multiple 

systems 
14 0.43 ± 0.13 0.32 ± 0.09 

Total 95 0.65 ± 0.05 0.54 ± 0.4 
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Table 6. Estimated demographic rates (± SE) for female 

sharp-tailed grouse during the 2016–18 breeding seasons. 

Demographic Rate Estimate ± SE 

Nesting rate (NEST) 1 

Clutch size - first nest (CS1) 11.06 ± 0.57 

Clutch size - renests (CS2) 9.57 ± 0.60 

Nest survival (NSURV) 0.40 ± 0.04 

Renesting rate (RENEST) 0.61 ± 0.10 

Chicks per egg laid (CPE) 0.91 ± 0.02 

Brood survival (BSURV) 0.69 ± 0.05 

Fledglings per chick hatched (FPC) 0.62 ± 0.06 
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Table 7. Model selection results for Cox proportional hazards models evaluating both breeding 

season and non-breeding season survival of female sharp-tailed grouse during 2016–2018. The 

number of parameters (K), AICc values, ΔAICc values, model weights (wi) and log-likelihoods 

are reported. The % rest-rotation and % summer rotation variables represent the percent of a 

female’s 50% kernel home range composed of each grazing system. 

Model K AICc ΔAICc AICc wi Cum. wi LL 

Breeding season       

Null 1 997.04 0.00 0.48 0.48 -498.52 

Year 5 998.99 1.95 0.18 0.66 -494.32 

Female age 1 999.03 1.99 0.18 0.83 -498.50 

% Summer rotation 3 1001.35 4.31 0.06 0.89 -497.60 

% Summer rotation + Year 7 1001.57 4.54 0.05 0.94 -493.45 

% Rest-rotation 3 1002.39 5.35 0.03 0.97 -498.12 

% Rest-rotation + Year 7 1002.58 5.55 0.03 1.00 -493.95 

Non-breeding season       

Year 2 383.89 0.00 0.90 0.90 -189.89 

Null 1 388.94 5.05 0.07 0.97 -194.47 

Female age 1 390.97 7.08 0.03 1.00 -194.47 
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Table 8. Model selection results for Andersen-Gill models of mortality risk in relation to 

landscape characteristics related to rangeland management and anthropogenic disturbance for 

female sharp-tailed grouse in eastern Monta.na and western North Dakota. The number of 

parameters (K), AICc values, ΔAICc values, model weights (wi) and log-likelihoods are 

reported. Edge density (ED) is defined as the total landcover edge length / polygon area. 

Model 

K AICc ΔAICc AICc wi 

Cum. 

wi 

LL 

Cropland 1 409.35 0.00 0.20 0.20 -203.68 

Null 1 410.51 1.15 0.11 0.31 -205.25 

Cropland + ED 2 410.62 1.27 0.11 0.42 -203.31 

Stocking rate (prv. yr) + 

Cropland 

2 410.65 1.30 0.10 0.52 -203.33 

ED 1 410.97 1.62 0.09 0.61 -204.49 

Stocking rate (cur. yr) + 

Cropland 

2 411.33 1.98 0.07 0.68 -203.66 

Stocking rate (prv. yr) 1 412.05 2.70 0.05 0.73 -205.03 

Brood-rearing 1 412.10 2.75 0.05 0.78 -205.05 

Stocking rate (prv. yr) + ED 2 412.36 3.01 0.04 0.83 -204.18 

Stocking rate (cur. yr) 1 412.46 3.11 0.04 0.87 -205.23 
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Stocking rate (cur. yr) + ED 2 412.96 3.61 0.03 0.90 -204.48 

Stocking rate (prv. yr) + Brood-

rearing 

2 413.62 4.27 0.02 0.93 -204.81 

Stocking rate (cur. yr) + Stocking 

rate (prv. yr) 

2 413.81 4.46 0.02 0.95 -204.90 

Stocking rate (cur. yr) + Brood-

rearing 

2 414.05 4.70 0.02 0.97 -205.03 

Stocking rate (prv. yr) x Brood-

rearing 

3 415.21 5.86 0.01 0.98 -204.60 

Stocking rate (cur. yr) x Brood-

rearing 

3 415.94 6.58 0.01 0.99 -204.97 

Grazing system + Cropland 5 417.14 7.79 0.00 0.99 -203.56 

Grazing system 4 417.66 8.31 0.00 0.99 -204.83 

Grazing system + ED 5 418.21 8.86 0.00 0.99 -204.10 

Grazing system + Stocking rate 

(prv. yr) 

5 418.91 9.55 0.00 1.00 -204.45 

Grazing system + Brood-rearing 5 419.27 9.92 0.00 1.00 -204.63 

Grazing system + Stocking rate 

(cur. yr) 

5 419.59 10.24 0.00 1.00 -204.79 
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Grazing system + Stocking rate 

(prv. yr) + Stocking rate (cur. yr) 

6 420.41 11.06 0.00 1.00 -204.20 

Grazing system x Brood-rearing 9 425.81 16.46 0.00 1.00 -203.89 

 

 

Table 9. Home range size (95% volume contour) for radio-marked female sharp-tailed grouse 

monitored in the 3 grazing systems during the breeding seasons of 2016–2018. Females were 

assigned to the grazing system containing ≥ 60% of their home range or were considered to 

use multiple systems if no one system accounted for ≥ 60% of their home range. 

Grazing System # Females 

Mean area (ha) ± 

SE 

Min. area (ha) 

Max area 

(ha) 

Rest-rotation 47 557 ± 94 63.81 3717.45 

Summer rotation 44 361 ± 39 86.13 1198.89 

Season-long 36 408 ± 43 57.51 1103.58 

Multiple systems 15 838 ± 179 191.43 2265.66 

Total 142 489 ± 41 57.51 3717.45 
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Table 10. Support for candidate models predicting the home range size of female sharp-tailed 

grouse during the breeding seasons of 2016–2018. The percent of a home range containing 

either the rest-rotation or summer rotation system are measured in relation to the season-long 

system. The number of parameters (K), AICc values, AICc values, model weights (wi), and log-

likelihoods are reported.  

Model K AICc ΔAICc AICc wi Cum. wi LogLik 

Edge density 3 2157.27 0.00 0.93 0.93 -1075.55 

Dist. to grassland edge 3 2165.05 7.78 0.02 0.95 -1079.44 

Nest outcome 3 2165.25 7.98 0.02 0.96 -1079.54 

Null 2 2166.80 9.53 0.01 0.97 -1081.36 

Year 3 2167.47 10.20 0.01 0.98 -1080.65 

% Rest-rotation 3 2167.71 10.43 0.01 0.98 -1080.77 

Stocking rate 3 2168.12 10.84 0.00 0.99 -1080.97 

% Summer rotation 3 2168.14 10.87 0.00 0.99 -1080.98 

Dist. to lek 3 2168.65 11.38 0.00 0.99 -1081.24 

Dist. to road 3 2168.73 11.46 0.00 0.99 -1081.28 

Dist. to oil pad 3 2168.84 11.57 0.00 1.00 -1081.33 

Prop. grassland 3 2168.88 11.61 0.00 1.00 -1081.36 
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Table 11. Simplified ranking matrix of female sharp-tailed grouse breeding season habitat 

selection based on vegetation type in 2016-2018. Matrix is based on comparing proportional 

habitat use within home ranges with the proportion of available habitat types. The ‘other’ 

habitat is composed primarily of ruderal grasslands. Habitat types with the same rank suggest 

that females did not differentiate between the two categories in habitat selection. 
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Grassland 0 + +++ +++ 1 

Wooded draws - 0 +++ +++ 1 

Other --- --- 0 +++ 3 

Agriculture --- --- --- 0 4 
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Table 12. Support for final candidate models evaluating sharp-tailed grouse nest site selection 

in 2016–18 in the three analyses examining habitat-level variables, management-level 

variables, and the combined analysis. The number of parameters (K), AICc values, ΔAICc 

values, model weights (wi) and log-likelihoods are reported. VOR is visual obstruction as 

measured at the nest bowl and mean shape complexity (MSI) is a measure of patch shape 

irregularity and is defined as the sum of each landcover patch’s perimeter divided by the 

square root of each patch area and divided by the number of patches, such that it equals 1 

when all patches are circular. 

Model K AICc ΔAICc 

AICc 

wi 

Cum. 

wi 

LogLik 

Habitat Analysis 
      

ln(VOR) + %Residual + Mean Shape 

Complexity 

5 284.95 0.00 0.61 0.61 -137.40 

ln(VOR) + %Grass + %Residual + 

%Shrub + Mean Shape Complexity 

7 285.97 1.02 0.37 0.98 -135.83 

ln(VOR) + %Grass + %Residual + 

%Shrub 

6 293.20 8.25 0.01 0.99 -140.49 

ln(VOR) + %Residual 4 294.22 9.27 0.01 1.00 -143.06 

 Mean Shape Complexity 3 524.93 239.97 0.00 1.00 -259.43 

Null 2 528.04 243.09 0.00 1.00 -262.00 
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Management Analysis 
      

Stocking Rate (prv. yr) 3 526.45 0.00 0.26 0.26 -260.19 

Stocking Rate (prv. yr) + Grazing System 5 526.54 0.09 0.25 0.51 -258.19 

Null 2 528.04 1.59 0.12 0.63 -262.00 

Stocking Rate (cur. yr) 3 528.49 2.05 0.09 0.73 -261.22 

Grazing System 4 528.90 2.45 0.08 0.81 -260.40 

Stocking Rate (cur. yr) * Grazing System 7 529.71 3.26 0.05 0.86 -257.70 

Stocking Rate (cur. yr) + Grazing System 5 529.85 3.40 0.05 0.90 -259.85 

Grazing System * Stocking Rate (prv. yr) 7 530.34 3.89 0.04 0.94 -258.02 

Stocking Rate (prv. yr) + Year 5 530.51 4.06 0.03 0.98 -260.17 

Stocking Rate (cur. yr) + Year 5 532.47 6.02 0.01 0.99 -261.16 

Grazing System + Year 6 533.02 6.57 0.01 1.00 -260.40 

Grazing System * Year 10 541.07 14.62 0.00 1.00 -260.24 

Full Analysis 
      

ln(VOR) + %Residual + MSI 5 284.95 0.00 0.58 0.58 -137.40 

ln(VOR) + %Residual + MSI + Stocking 

Rate (prv. yr.) 

6 285.57 0.61 0.42 1.00 -136.67 
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Stocking Rate (prv. yr.) 3 526.45 241.49 0.00 1.00 -260.19 

Null 2 528.04 243.09 0.00 1.00 -262.00 
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Figure 1. Locations of successful (stars) and failed (squares) sharp-tailed grouse nests in 2016–

18 in relation to different grazing treatments. 



 
37 

 

 

 

Figure 2. Estimated daily nest survival in relation to important habitat variables, with 85% 

confidence intervals shown in grey. Visual obstruction (VOR) was averaged across the 6 m 

vegetation plot. 
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Figure 3. Estimated daily nest survival in relation to stocking density while the nest was active, 

with 85% confidence intervals shown in grey. 
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Figure 4. Estimated overall nest survival (± 85% confidence intervals) for sharp-tailed grouse in 

each of the three grazing treatments (A) and in each of the three treatments within the rest-

rotation system in 2016–18 (B).  
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Figure 5. Kaplan-Meier plot of cumulative weekly survival during the breeding season of radio-

marked female sharp-tailed grouse associated with 3 grazing systems in eastern Montana and 

western North Dakota. Confidence intervals omitted for clarity. 
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Figure 6. Weekly hazard functions during the breeding season for female sharp-tailed grouse 

associated with 3 grazing systems in eastern Montana and western North Dakota. Confidence 

intervals omitted for clarity. The approximate timing of lekking, nesting and brood-rearing 

activity is shown at the bottom. 
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Figure 7. Risk score (± 85% confidence intervals) from an Andersen-Gill formulation of the Cox 

proportional hazards model estimating the risk of mortality for female sharp-tailed grouse 

relative to the percent agriculture within 1,300 m in eastern Montana and western North Dakota. 
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Figure 8. Female sharp-tailed grouse breeding season home range size (± SE) by grazing system.  

An individual female was assigned to a grazing system according to the system containing ≥ 

60% of the individual’s home range. 
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Figure 9. Relationship (± 85% confidence intervals) between the density of edge habitat (total 

landcover edge length / polygon area) and breeding season home range size for female sharp-

tailed grouse.  
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Figure 10. Bayesian variable selection identifying important predictors of sharp-tailed grouse 

third-order habitat selection during the breeding season. Predictors with indicator variables ≤ 

0.25 are considered unimportant. 
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Figure 11. Relationship (± 95% credible intervals) between the distance to a road and the relative 

probability of selection of female sharp-tailed grouse within the breeding season home range.  
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Figure 12. Posterior estimates of the variability in selection (σ2 ± 95% credible intervals) among 

individual female sharp-tailed grouse for each habitat variable.  σ2 is a measure of how strongly 

individuals varied in selection for different habitat variables. Habitat variables were scaled prior 

to model fitting. 
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Figure 13. Estimated relative probability of nest site selection in relation to important habitat 

variables, with 85% confidence intervals shown in grey. Visual obstruction (VOR) was measured 

at the nest bowl. 

 

 

 

 

 

 

 


