Sprague's Pipit Distribution Modeling

Scientific Name: Anthus spragueii Distribution Status: Migratory Summer Breeder State Rank: S3B Global Rank: G4

Inductive Modeling

Model Created By: Bryce Maxell and Joy Ritter Model Creation Date: October 29, 2012 Model Evaluators: Bryce Maxell and Joy Ritter Model Goal: Inductive models will predict the distribution and relative suitability of breeding habitats at large spatial scales across the species' known breeding range in Montana.

Inductive Modeling Methods

Model Data and Species Range Information:

Location Data Source	Montana Natural Heritage Program Point Observation Database
Total Number of Records	4,031
Location Data Selection	Spatially unique records associated with breeding activity with <= 1600
Rule 1	meters of locational uncertainty
No. Locations Meeting	2,270
Selection Rule 1	
Location Data Selection	No overlap in locations when buffered by the associated locational
Rule 2	uncertainty in order to avoid spatial autocorrelation.
No. Locations Meeting	1,468
Selection Rule 2	
Season Modeled	Summer Breeding
No. Model Train Locations	1099
No. Model Test Locations	366
No. Model Background	43,274
Locations	
Area of Species Range in	274,683 km ² (72.1%)
State (Percent of Montana)	

Environmental layer information:

Layer	Identifier	Description	
Aspect	CONTEWASP	P Continuous measure of east to west aspect	
	CONTNSASP	Continuous measure of north to south aspect	
Bias	BIAS	Categorical layer representing potential underlying biases inherent in the observation database as a result of proximity to roads and public	
		lands	
Elevation	CONTELEV	Continuous elevation in meters form the National Elevation Dataset	
Geology	CATSDEGEOL	Categorical surficial geology - 931 categories	
Land Cover	CATESYS	Categorical Level 2 Montana land cover framework with roads removed – 27 categories	
Max Temp	CONTTMAX	Continuous estimated average maximum daily July temperature in degrees Fahrenheit for 1971-2000	
Min Temp	CONTTMIN	Continuous estimated average minimum daily January temperature in degrees Fahrenheit for 1971 -2000	
Precipitation	CONTPRECIP	Continuous annual precipitation in 1cm intervals	
Slope	CONTSLOPE	Continuous degrees of slope	
Soil Temp	CATSOILTMP	Categorical soil temperature and moisture regimes – 12 categories	
Stream Dist	CONTSTRMED	Continuous Euclidean distance from major streams in 1-meter intervals	
Forest Dist	CONTFRSTED	Continuous Euclidean distance from forest and woodland systems in 1-meter intervals	

Maxent Model Input String:

Range wide

java -mx2048m -jar c:\MaxEnt\maxent.jar -a -z nowarnings noprefixes -P -J -o

U:\IndSpecies\Anth_spra\2012_10_29\RangeOut -s

U:\IndSpecies\Anth_spra\2012_10_29\Anth_spra_train.csv -T

U:\IndSpecies\Anth_spra\2012_10_29\Anth_spra_test.csv -e I:\modelingSecondRoundInputLayers nowriteclampgrid nowritemess maximumbackground=43274 writebackgroundpredictions noextrapolate nodoclamp -N CONTVRM -t BIAS -t CATESYS -t CATSDEGEOL -t CATSOILTMP

<u>Statewide</u>

java -mx2048m -jar c:\MaxEnt\maxent.jar -a -z nowarnings noprefixes -P -J -o

U:\IndSpecies\Anth_spra\2012_10_29\StateOut -s

U:\IndSpecies\Anth_spra\2012_10_29\Anth_spra_train.csv -T

U:\IndSpecies\Anth_spra\2012_10_29\Anth_spra_test.csv -e I:\modelingSecondRoundInputLayers nowriteclampgrid nowritemess maximumbackground=60000 writebackgroundpredictions noextrapolate nodoclamp -N CONTVRM -t BIAS -t CATESYS -t CATSDEGEOL -t CATSOILTMP

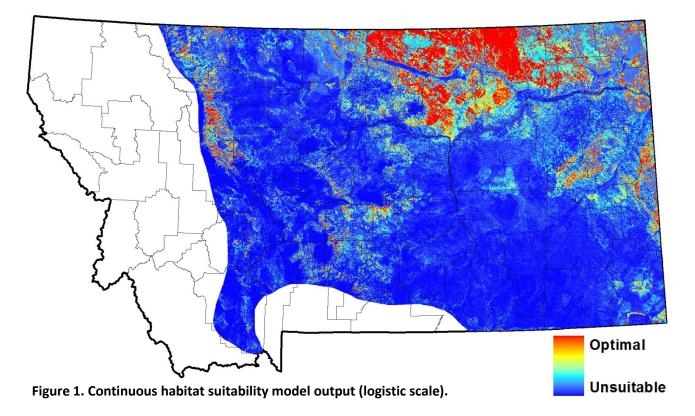
Inductive Model Evaluation

Model Performance:

Model appears to adequately reflect the distribution of Sprague's pipit nesting habitat across Montana. Evaluation metrics suggest a good model fit (see table of evaluation metrics). The presence of Bias as a significant predictor variable suggests that survey efforts may be biased towards roads and public lands.

Top contributing layers:

Variable	Percent Contribution	Permutation Importance
CONTTMIN	27.2	20.2
CATESYS	24.2	21.9
CATSDEGEOL	16.3	8.9
CONTTMAX	14.6	22.7
BIAS	7.5	3.3
CONTSLOPE	6.8	13.8


Evaluation metrics:

Metric	Value
Low Logistic Threshold ^a	0.03
Area of predicted low suitability habitat within species' range	85,646 km ²
Medium Logistic Threshold ^b	0.20
Area of moderate suitability habitat within species' range	24,718 km ²
Optimal Logistic Threshold ^c	0.58
Area of predicted optimal habitat within species' range	7,031 km ²
Total area of predicted suitable habitat within species' range	117,395 km ²
Absolute validation index (AVI) ^d	0.962
Avg Deviance (X +/- SD) ^e	1.78 +/- 1.98
Training AUC ^f	0.930
Test AUC ^g	0.920

a. The logistic threshold between unsuitable and low suitable as determined by Maxent which balances training data omission error rates with predicted area.

- b. The logistic threshold value where the percentage of observations above the threshold is what would be expected if the observations were randomly distributed across logistic value classes. This is equivalent to a null model.
- c. The logistic threshold where the percentage of observations above the threshold is 10 times higher than would be expected if the observations were randomly distributed across logistic value classes.
- d. The proportion of test locations that fall above the low logistic threshold.
- e. A measure of how well model output matched the location of test observations. In theory, everywhere a test location was located, the logistic value should have been 1.0. The deviance value for each test location is calculated as 2 times the natural log of the associated logistic output value. Deviance values vary from 0, when test observations are associated with a logistic value of 1, to around 13.8, when logistic values approach 0.001. Deviances for individual test locations are plotted in Figure 3.
- f. The area under a curve obtained by plotting the true positive rate against 1 minus the false positive rate for model training observations. Values range from 0 to 1 with a random or null model performing at a value of 0.5.
- g. The same metric described in f, but calculated for test observations.

Inductive Modeling Map Outputs

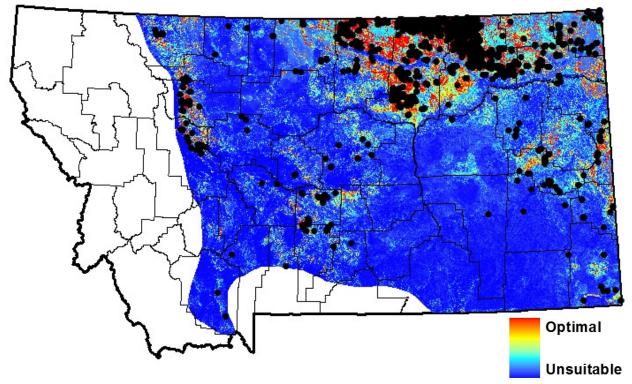


Figure 2. Continuous habitat suitability model output with training and test data.

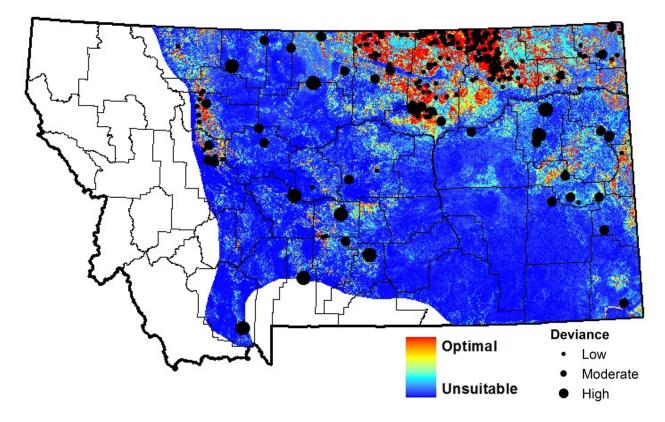


Figure 3. Continuous habitat suitability model output with relative deviance for each test observation

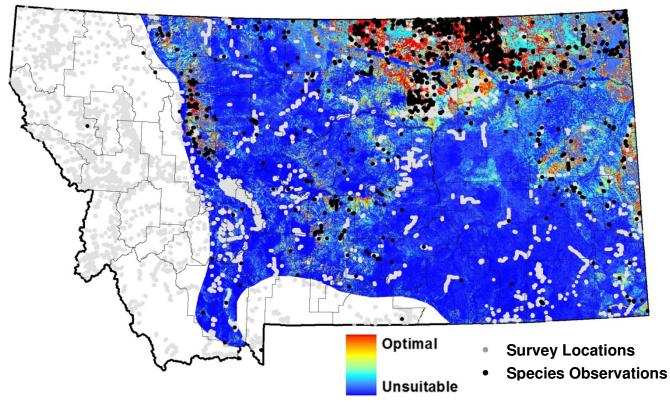
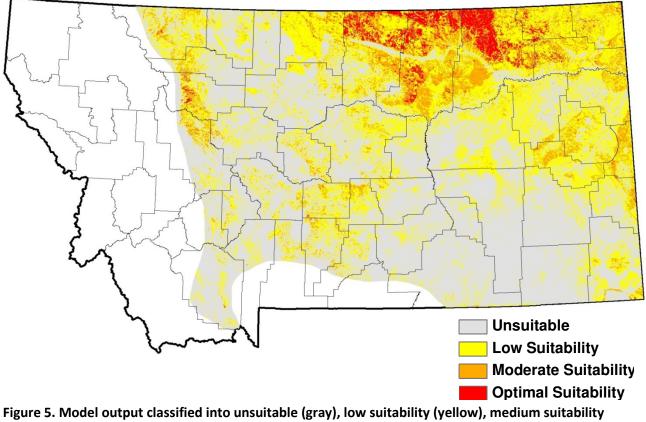



Figure 4. Continuous habitat suitability model output with survey locations that could have detected the species (gray) and detections of species (black)

(orange), and optimal suitability (red) habitat classes.

Deductive Model

Model Created By: Bryce Maxell Model Creation Date: 11/1/2010

Model Evaluators: Joy Ritter and Bryce Maxell

Model Evaluation Date: 10/29/2012

Model Goal: Deductive model is meant to represent species-habitat associations during summer breeding season. Species were classified as commonly or occasionally associated with ecological systems. See details on how ecological systems were associated with species and the suggested uses and limitations of these associations under individual species accounts in the Montana Field Guide at: http://fieldguide.mt.gov

Deductive Modeling Methods

Ecological System	Code	Habitat Association
Great Plains Mixedgrass Prairie	7114	Common
Great Plains Closed Depression Wetland	9252	Occasional
Great Plains Sand Prairie	7121	Occasional
Great Plains Saline Depression Wetland	9256	Occasional
Active and Stabilized Dune	3160	Occasional
Rocky Mountain Lower Montane, Foothill, and Valley Grassland	7112	Occasional
Great Plains Prairie Pothole	9203	Occasional
Great Plains Riparian	9326	Occasional

Deductive Model Evaluation

Discussion of Model Performance:

The species is highly associated with Great Plains Mixedgrass Prairie. However, they are more highly associated with this system in northeastern Montana where it has a higher percentage of grass than southeastern Montana where it has a higher percentage of shrubs.

Evaluation metrics:

Metric	Value
Area of commonly associated	607,077
habitats (Km²)	
Absolute validation index (AVI) for	0.72
common habitat associations	

Deductive Model Output (Maps)

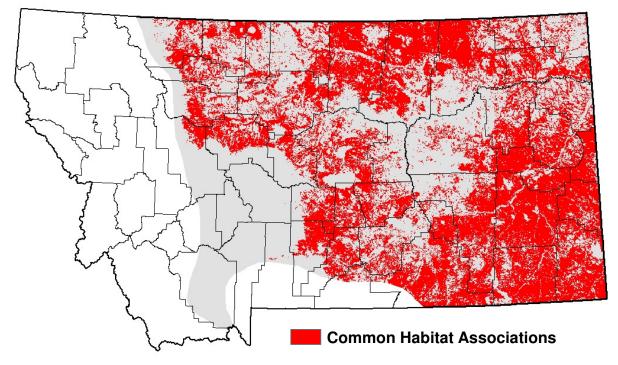


Figure 6. Common habitat association classes as determined by expert opinion (see Montana Field Guide species account).