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Abstract. Wildlife managers need reliable methods to estimate large carnivore densities and population

trends; yet large carnivores are elusive, difficult to detect, and occur at low densities making traditional

approaches intractable. Recent advances in spatial capture-recapture (SCR) models have provided new

approaches for monitoring trends in wildlife abundance and these methods are particularly applicable to

large carnivores. We applied SCR models in a Bayesian framework to estimate mountain lion densities in

the Bitterroot Mountains of west central Montana. We incorporate an existing resource selection function

(RSF) as a density covariate to account for heterogeneity in habitat use across the study area and include

data collected from harvested lions. We identify individuals through DNA samples collected by (1) biopsy

darting mountain lions detected in systematic surveys of the study area, (2) opportunistically collecting

hair and scat samples, and (3) sampling all harvested mountain lions. We included 80 DNA samples

collected from 62 individuals in the analysis. Including information on predicted habitat use as a covariate

on the distribution of activity centers reduced the median estimated density by 44%, the standard deviation

by 7%, and the width of 95% credible intervals by 10% as compared to standard SCR models. Within the

two management units of interest, we estimated a median mountain lion density of 4.5 mountain lions/100

km2 (95% CI¼ 2.9, 7.7) and 5.2 mountain lions/100 km2 (95% CI¼ 3.4, 9.1). Including harvested individuals

(dead recovery) did not create a significant bias in the detection process by introducing individuals that

could not be detected after removal. However, the dead recovery component of the model did have a

substantial effect on results by increasing sample size. The ability to account for heterogeneity in habitat

use provides a useful extension to SCR models, and will enhance the ability of wildlife managers to reliably

and economically estimate density of wildlife populations, particularly large carnivores.
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INTRODUCTION

Understanding patterns and drivers of abun-
dance and density is a central tenant of ecology
and wildlife management (Andrewartha and
Birch 1954), and the estimation of these param-
eters has long challenged ecologists (Seber 1973,
Jolly 1982). The ability to estimate the abundance
and density of wildlife is particularly important
in applied settings, where conservation or man-
agement actions are often assessed by measuring
trends in these parameters. Capture-recapture
(CR) methods for closed populations are the
standard methodology for the estimation of
animal abundance from fixed arrays of traps or
other sampling devices (Borchers and Buckland
2002). However, some species such as large
carnivores introduce additional complexities for
the estimation of density because these species
are wide ranging, occur at low densities, and are
difficult to detect. These species commonly
violate assumptions about geographic closure in
the CR framework and make estimation of the
effective sampling area difficult (Royle et al.
2013a). Additionally, individual heterogeneity in
recapture probability (detection probability) over
fixed arrays due to behavioral differences or
differences in space use challenges conventional
CR methods. Recent methodological advances in
spatial capture-recapture (SCR) methods address
these shortcomings of conventional CR methods
by incorporating the spatial organization of
individuals through the estimation of trap-
specific capture probabilities (Efford 2004, Efford
et al. 2009, Gardner et al. 2010, Royle et al. 2013a).

SCR methods have recently been extended to
accommodate unstructured spatial sampling
(Thompson et al. 2012) where effort is variable
across the study area and applied to the
estimation of mountain lion density (Russell et
al. 2012). Mountain lions (Puma concolor) in North
America have slowly increased in number and
expanded their range over the last several
decades (Hornocker and Negri 2009). Wildlife
managers need reliable methods to monitor
mountain lion population trends to manage
harvest, minimize conflicts with humans and
balance mountain lion densities with ungulate
management objectives. Traditional approaches
to estimate mountain lion abundance have
focused on marking and counting individual

lions, a method that is labor-intensive and
expensive, and often minimum counts of indi-
viduals are treated as a true census for manage-
ment purposes (Robinson et al. 2015). The
resources required by these traditional methods
have limited the spatial scope and utility of the
resulting estimates for population management
(Stoner et al. 2006, Quigley and Hornocker 2010),
and minimum counts of known individuals
underestimate true population sizes. Therefore,
the SCR approach provides managers with an
effective and economical alternative method to
estimate mountain lion density.

Royle et al. (2013b) provided an approach to
incorporating covariates on density including
information about habitat selection into SCR in
the Bayesian framework. Mountain lions have
been shown to have strong selective preferences
for areas that offer cover, forest edges, and
moderate slopes (Newby 2011). The assumption
that all habitat within the study area will be used
equally is unlikely to be true for mountain lions
and most large carnivores. Therefore, we extend
the Russell et al. (2012) model for estimating
mountain lion density to include the integration
of a previously existing resource selection model
as a covariate to account for this differential
habitat selection. For many studies, pre-existing
information about habitat use could inform the
distribution of activity centers without requiring
ancillary data (e.g., GPS or telemetry data), or use
of the methodologically intensive joint estimation
framework. Here, we evaluate the effects of
introducing an existing RSF into Bayesian SCR
models by comparing models results with and
without the RSF. Additionally, we incorporate
the ability to include information about harvest-
ed animals (dead recoveries) into Bayesian SCR
models, increasing the utility of the modelling
approach for species subject to harvest.

METHODS

Study area
The 2,625 km2 study area was located in the

southern Bitterroot watershed in western Mon-
tana, USA, primarily within Ravalli County and
spanning portions of two mountain lion man-
agement units (LMU 250 and LMU 270; Fig. 1).
Elevations range from 1200 m to 2600 m, with
moderate to steep terrain. Precipitation ranges
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annually from 40 cm in the valley bottoms to 88
cm in the mountains, and primarily falls as snow
during winter (PRISM Climate Group 2013).
Ungulate species in the study area include elk
(Cervus elaphus), white-tailed deer (Odocoileus
virginianus), mule deer (O. hemionus), bighorn
sheep (Ovis candensis), mountain goat (Oreamnos
americanus) and moose (Alces alces). Large carni-
vore species, in addition to mountain lions,
include wolves (Canis lupus) and black bears
(Ursus americanus). The mountain lion manage-
ment units have had variable season structures,
mountain lion harvest quotas, and presumably
population size, during the past 20 years. From
1992 to 2000, harvest across both management
units averaged 28.2 mountain lions per year (SD
¼ 12.9). From 2000 to 2008, harvest across both
management units declined to an average of 6.4
mountain lions per year (SD¼ 2.3). From 2009 to
2012, harvest across both management units
averaged 16.5 mountain lions per year (SD ¼
7.6). During 2009–2012, harvest included an

average of 6.5 females and 10.0 males, and
89.6% of the harvest was classified as adult
animals.

Data collection
We overlaid a 5 3 5 km grid across the study

area and assigned each cell a grid identification
number. We randomly generated a list of grid
cells and started search effort each day in the
randomly assigned grid cell. We stratified sam-
pling in this manner to ensure sampling was
allocated across both the high and low quality
habitat. Mountain lion hair, scat, and muscle
samples were collected by trackers and hounds-
men for genetic analysis to identify individuals.
When a fresh mountain lion track was located,
the houndsmen would release trained hounds to
locate and tree the mountain lion. Tracks were
backtracked and inspected to determine if the
mountain lion was independent or associated
with a family group, and group size was
recorded. Sex was determined based on track

Fig. 1. The mountain lion study area in the Bitterroot Watershed of western Montana during winter 2012–2013

(A) showing the 53 5 km sampling grid and the underlying resource selection function (RSF) for mountain lions

during winter (B), the spatial distribution of effort (C; measured in km), and the spatial locations of recaptures

(D). The 53 5 km grid cells define the spatial capture-recapture model grid where the center point of grid serves

as a trap. The black lines denote mountain lion hunting district (HD) boundaries, with HD 250 and HD 270

denoted.
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size and physical features of treed mountain
lions. Sex was assigned by genetic analysis when
sex could not be determined in the field or field
staff was uncertain of sex. Muscle samples were
collected from treed animals using biopsy darts
fired from a CO2-powered rifle (Palmer Cap-
Chur brand model 1200c). When older mountain
lion tracks were located, a tracker or houndsmen
would backtrack the tracks and collect any hair
or scat samples along the tracks. All field crews
used a Global Positioning System to record the
length (in km) and location of their search effort.
Harvest and management removals occurred
during the sampling period and we used samples
collected from harvested animals within the
study area. In Montana, the hide and skull of
all mountain lions publically harvested must be
presented to Montana Department of Fish,
Wildlife and Parks. During the mandatory check,
officers collected a muscle sample from each
harvested animal. We also collected harvest
samples from all adjacent hunting districts to
determine if animals marked within the study
area may have moved out of the study area.
Adjacent districts had similar harvest manage-
ment regulations as the study area.

To estimate the density of independent moun-
tain lions in the study area, we censored the
dataset to include only samples from indepen-
dent animals or the adult female of a family
group. This eliminated multiple samples from
within family groups, and eliminated all groups
where only a subadult animal within the group
was sampled. The average age that dependent
offspring disperse and become independent of
their mother is approximately 15 months of age
(Sweanor et al. 2000, Robinson and DeSimone
2011), therefore our density estimates include all
animals .15 months of age. We estimated the
number of independent mountain lions rather
than density of all mountain lions because
harvest management quotas are based on the
number of independent, subadult or adult-aged
animals.

We performed genetic analysis of hair, scat,
and muscle samples to identify the sex and
individual identity of sampled mountain lions
following methods described in Russell et al.
(2012). We genotyped tissue samples using 20
variable microsatellite loci used previously in
mountain lions (see Appendix A for details).

Spatial capture-recapture modelling
We followed the hierarchical model formula-

tion described by Royle et al. (2009) applied to
genetic capture-recapture data from unstruc-
tured spatial sampling. For our purposes we
decomposed the DNA observations of individu-
als at particular sites during a sampling period
into two components: a spatial point process that
describes the distribution of animals in space and
an encounter process that describes the capture
of individuals in grid cells given their activity
center. The spatial point process model allows for
the spatial information from the locations of
individual captures to be incorporated into the
estimate of density or abundance. Within the
SCR framework we assume that a population
consists of n individuals, and that each individ-
ual, i¼ 1, 2, . . . , n, in the population has a fixed
activity center representing the center of the area
occupied by the individual during the study
period. Each individual moves about these
activity centers, which are allowed to overlap,
according to some distribution defined in the
observation model. In addition, we assume that
the farther an observer is from the animal’s
activity center the less likely the animal is to be
detected.

For the encounter model, we constructed
individual, cell-specific encounter histories for
each time period of the study, yi,j,k for individual
i; cells j¼ 1, 2, . . . , J; and sample periods k¼ 1, 2,
. . . , K. In this study individual encounters did
not arise from discrete trap locations (e.g.,
camera traps), but instead encounters could
occur at any spatial location searched by trackers
and houndsmen. To accommodate this unstruc-
tured spatial sampling, we used the center of
sampling grid cells as conceptual traps following
Russell et al. (2012). Previous simulations dem-
onstrated little effect of grid cell size on lion
density estimates using this design (Russell et al.
2012), and, more generally in SCR models
(Sollmann et al. 2012). Because animals were
also harvested and removed from the population
during the sampling period, we defined 4
sampling periods so that harvested individuals’
detection probabilities could be adjusted in later
sampling periods (see below for dead recoveries).
We selected 4 sampling periods (December,
January, February and March–April) that roughly
corresponded to monthly sampling intervals in
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efforts to adjust detection probabilities of har-
vested animals and still allow for adequate
sampling effort and detections per sampling
interval. We assumed that individuals could
have been encountered in all traps for each
sampling period through search effort or harvest.
We developed an encounter history for each
animal during each sampling period where yi,j k
; Binomial (K, pi,j) (Eq. 5.2.1, Royle et al. 2013a)
and the value of yi,j,k ¼ 0 if the animal i was not
encountered in the grid cell j on sampling
occasion k and yi,j,k ¼ 1 if the animal i was
encountered 1 or more times in the grid cell j on
sampling occasion k. If an animal i was harvested
during a previous sampling period, we set the
encounter history to yi,j,k ¼ 0 for all grid cells for
all subsequent sampling periods, and removed
the individual from likelihoods within the
Markov chain Monte Carlo estimation of param-
eters (i.e., the detection probability for that
individual after known harvest did not influence
the estimate of detection probability for the
remaining live individuals).

Following Gardner et al. (2010) and Russell et
al. (2012), we assume that cell-specific encounter
probabilities for each i individual and j cell ( pij)
are related to the Euclidean distance between an
individual’s activity center (si ) and cell j, r is a
scale parameter depending on the measurement
units, and h is a shape parameter of the activity
distribution (Gardner et al. 2010)

pij ¼ p0exp � 1

2r2
jjxj � sijj2

� �

(Eq. 5.2.3, Royle et al. 2013a). When h ¼ 1, this
model describes a bivariate-normal distribution
of animal activity, and a value of h ¼ 0.5
corresponds to an exponential activity distribu-
tion. We used a prior distribution for h ; U(0.5,
1). This model of detection probability

logitðp0;ijÞ ¼ }0 þ b 3 Xij

assumes a baseline encounter rate a0 which is the
probability of encounter at the animal’s center of
activity (Royle et al. 2013a). We considered the
following covariates as potentially modifying
detection probability: (1) sex, and (2) log-trans-
formed search effort within a given sampling
period (Thompson et al. 2012). We did not record
hunter search effort, so we assumed that hunter
search effort was equal to the mean of our search

effort during each sample period because both
hunters and researchers utilized the same road
network to search for tracks. This allowed us to
estimate the effects of search effort, given a small
number of samples were collected via harvest in
grid cells with no recorded search effort. We
further considered the interactive effects of
distance and sex on detection probability, where-
in capture probabilities differ by sex because
females are expected to have smaller activity
distributions than males (Hornocker and Negri
2009).

In practice, the statespace is chosen to encom-
pass the movements of all animals within the
study area but the statespace does not determine
the extent of animal movements as part of the
density estimate, as one-half mean maximum
distance moved (MMDM; Royle et al. 2013a) or
similar measures do in traditional studies. The
statespace is chosen to be larger than the
trapping grid such that the model accounts for
individuals with activity centers outside of the
trapping grid, but whose activity range extends
into the trapping grid. The exact size of the
trapping grid buffer used to construct the states-
pace does not strongly influence density esti-
mates under the assumption of a uniform
distribution of activity centers (Russell et al.
2012). When spatial covariates are included,
however, the size of the buffer may influence
density, as different values of spatial covariates
may be included within the buffer. We choose a
buffer size of 10 km around our study grid and
identified potential activity centers within this
area every 2 km. Because our study grid was not
a square, we applied the 10 km from the most
extreme edges of our grid in each cardinal
direction, such that the buffer exceeded 10 km
in some areas. In one area the buffer zone was
reduced to ,10 km to exclude areas that did not
include wintering lion habitat. This resulted in a
5912 km2 statespace.

Currently, methods exist in ‘‘secr’’ (Efford
2014) to incorporate dead recoveries into spatial
capture-recapture models in the likelihood
framework. We developed a method to incorpo-
rate information about harvested lions in a
Bayesian framework by including a matrix,
indicating whether the animal was potentially
alive in each sampling period and therefore
available to be captured or if the animal had
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been harvested during a previous session. This
matrix was then used to censor when animals
were not available to be captured from the
likelihood, thus preventing a bias in detection
probabilities from harvested individuals not
available for detection post-harvest.

We included information about winter moun-
tain lion habitat quality by incorporating predic-
tions from an existing resource selection function
(RSF) as a density covariate. We incorporated
values of the RSF into our estimate of density
using the following equation:

log
�
lðs; bÞ

�
¼ b0 þ bvCvðsÞ

(Eq. 11.2.1, Royle et al. 2013a); where l(s, b)
returns the expected density of activity centers at
location s given the covariate values C and the
parameter estimates b. The RSF was developed
statewide in Montana using radiotelemetry (VHF
and GPS) data from 1980 to 2012, using a
generalized linear mixed-effects model (Robin-
son et al. 2015). The RSF was developed
following a used-available design at the second-
order, home range scale (Johnson 1980), corre-
sponding well to the ecological selection process
for individual activity distributions. The RSF was
estimated by comparing 18,695 GPS telemetry
locations from 85 individual lions to availability
at the state-wide scale, and then validating it
using withheld data from 142 VHF and GPS
collared lions, as well as harvest locations from
1988 to 2011. Winter mountain lion habitat was a
positive function of southerly aspects, intermedi-
ate elevations and slopes, forested areas, and
areas far from agriculture or human develop-
ment (Robinson et al. 2015). The RSF model
validated very well using out-of-sample teleme-
try data (Spearmans rho ¼ 0.95). In the study
area, 218 mountain lion harvest locations were
used to validate the RSF model, and the model
validated well (Spearman rho ¼ 0.87; Appendix
B). We used the logit of continuous predictions
rescaled from 0 to 1 from this RSF as a covariate
in the SCR model.

We evaluated the effects of including harvested
animals in the analyses in two ways. First, to
evaluate potential effects of bias in the detection
process by introducing individuals that could not
be detected after removal, we compared density
and precision of estimates from a model that

masked harvested animals from sampling peri-
ods post-harvest and a model that treated
harvested animals as live throughout the sam-
pling period. Second, to evaluate the effects of
the harvest samples on the density estimates, we
compared density estimates from a model that
included only the live animal samples with a
model that included both the live animal and
harvest samples. In both these evaluations, we
used the best model identified through our
model selection process for comparisons.

Bayesian analysis by MCMC
We used Bayesian MCMC methods in the

SCRbayes package for the R programming lan-
guage to estimate the posterior distribution of the
model parameters (https://sites.google.com/site/
spatialcapturerecapture/scrbayes-r-package; see
Supplement). This approach uses data augmenta-
tion to add a sufficiently large number of all-zero
(unencountered) capture histories to create a
dataset of M individuals. We determined the data
augmentation to be large enough when final
posterior estimates of population size were not
limited by the number of augmented unencoun-
tered individuals (see Royle et al. 2013a). In
essence, we assume a uniform prior distribution
on N, population size, from 0 to M, where M
includes the unencountered animals. Here, we
augmented with 1000 all-zero encounter histories.
Following Russell et al. (2012), models were run
for 30,000 iterations with the first 10,000 iterations
discarded as burn-in, leaving 20,000 samples from
the posterior distribution. Starting values for
parameters were: r ¼ 1, h ¼ 0.75, ln(a0) ¼ 0, b ¼
0, w ¼ 0, and wsex ¼ proportion of individuals
sampled that were male (0.40 for our sample). We
used improper priors (�‘, ‘) for a0 and all b
parameters, (0, ‘) for r, (0.5, 1) for h, and (0, 1) for
w and wsex. We assessed model convergence by
examining posterior parameter-wise trace plots
and histograms.

To estimate lion abundance (N) within the
statespace and within the two management units
of interest, we counted the number of activity
centers within the statespace and within the
management units. Since this estimate of abun-
dance is linked explicitly to an area (either the
statespace or a management unit), we calculate
density (D) by finding the quotient of the N
activity centers and the area of the statespace or
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management unit.

Bayesian model selection and model goodness of fit
We evaluated 16 potential models (Appendix

C) that we fit to the data in a Bayesian
framework. We conducted a form of model
selection by examining the posterior significance
of the parameters in each model weighted by our
prior knowledge of mountain lion biology. For
the sex and effort effects on the detection
probability, as well as RSF covariate on activity
center distribution, 95% credible intervals that
excluded zero would provide evidence of signif-
icance. Similarly, for the sex effects on the scale
parameter of the activity distribution, we exam-
ined whether male and female values had
significantly different 95% credible intervals. We
did not, however, immediately exclude models
that included apparently non-significant param-
eters, as many of these parameters derive
support from previous ecological studies (i.e.,
differences in male and female activity range
sizes). We evaluated the effects of introducing the
RSF covariate by comparing models with with-
out the RSF as a covariate on the distributions of
activity centers. We compared the density and
precision of estimates of the best model with and
without the RSF covariate.

We evaluated model goodness of fit for the top
models following methods described by Russell
et al. (2012) including a standard Bayesian P-
value approach (Gelman and Shalizi 2011, Royle
et al. 2013a). We tested the GOF of the encounter
process separately from the GOF of the underly-
ing spatial point process. For the encounter
process, we calculated a discrepancy measure
for the cell-specific individual encounter frequen-
cies to compare posterior samples and new
realizations of the data generated from the
posterior distribution. We used the Freeman-
Tukey statistic to construct a Bayesian P-value

D ¼
XN

i¼1

ð ffiffiffiffini
p � ffiffiffiffi

ei
p Þ2

where ni is the (observed or simulated) encounter
frequency conditional on si (activity center) and ei
is the expected value under the model. The P-
value is the proportion of time D(obs) .

D(posterior).
For the point-process, we examined model

GOF by testing whether estimated activity
centers were independently and uniformly dis-
tributed over the statespace. We calculated a
Bayesian P-value based on the statistic, I¼ (G – 1)
3 s2/�n, where G is the total number of grid cells,
and �n and s2 are the mean and variance of the
number of activity centers per grid cell. We
compare I from the estimated posterior distribu-
tion of the point-process to simulations under
complete spatial randomness. We did not apply
the point-process GOF test to models with the
RSF covariate on the distribution of activity
centers, because we would not expect activity
centers to be independently and uniformly
distributed across space for these models.

As a final metric of model goodness of fit, we
compared the observed and expected number of
individuals captured for each model to holisti-
cally examine both the point-process and detec-
tion process. We calculated the expected number
of individuals captured with

EðncapÞ ¼
X

S

Esi
3 nsi

where Esi
represents the exposure probability of

an individual with an activity center at si and nsi

is the number of activity centers estimated at si.
By computing these values for each MCMC
iteration, we constructed a 95% confidence
interval for the number of individuals captured
given the complete process described by the
model. An observed number of captures that fell
outside this range would indicate poor model fit.

RESULTS

We searched for mountain lion sign over a total
of 8382 km during 98 person-days from Decem-
ber 7, 2012 to April 2, 2013. Search effort was
distributed across 85 of 105 grid cells, and 80% of
the effort occurred before February 15, 2014
(Appendix D). Hunter effort was unquantified,
but there were only 8 grid cells in which a
harvest but no live recapture occurred. Animals
were sampled in 35 grid cells, and individual
grid cells contained 0–6 samples (Fig. 1). A total
of 80 samples from independent animals were
included in the analysis, and 62 unique individ-
uals were identified. Three individuals were
identified from hair samples, 4 individuals were
identified from scat samples, 43 individuals were
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identified from biopsy muscle samples, and 30
individuals were identified from harvest sam-
ples. There were 25 male mountain lions identi-
fied and 37 female mountain lions identified.
Fifteen individuals were recaptured 2–4 times
during the sampling period (13 animals captured
2 times, 1 animal captured 3 times, and 1 animal
captured 4 times). Thirty of the 62 individuals
were harvested (17 female, 13 male), and of these,
10 (6 female, 4 male) were previously sampled
and identified. The detection of new genotypes
scaled linearly with search effort throughout the
entire sampling period (Appendix D). No ani-
mals detected within the study area were later
detected in the harvest sampling conducted
outside the study area, suggesting limited move-
ment occurred during the sampling period.

Model selection and goodness of fit
We evaluated 16 candidate models. Across all

models, the parameter estimates for effort and
RSF were consistently positive with 95% credible
intervals that did not include zero (Appendix C).
The 95% credible interval for the effect of sex on
detectability and the sex-specific scale parame-
ters overlapped zero in all models, but the effect
of sex and sex-specific scale parameters were in
the expected direction (Appendix C). The Bayes-
ian P-value for the encounter process GOF
produced reasonable results for all models and
did not aid discrimination between models. Our
ad hoc GOF measure of the predicted number of
captures showed all models plausibly described
the combination of the underlying point process
and capture of individuals because the number

of individuals captured (n ¼ 62) falls within the
expected range. Therefore, we present results of
all 4 models that included effort and RSF, and we
selected the full model that included detection
covariates for search effort and sex, RSF-driven
densities and sex-specific activity distributions
for further evaluation (Table 1).

Estimates from the full model indicated
monthly detection probabilities were higher in
grid cells with more search effort and mountain
lion activity center densities were higher in areas
with larger RSF values (Table 2). Females had
higher baseline detection probability. Males were
more likely to be detected farther from their
activity center than females (e.g., males had
larger observed movements; Appendix E). Using
this best model, we estimated a median of 226
mountain lions over the entire statespace of 5,912
km2 (Fig. 2), corresponding to a median realized
density (D) of 3.8 (6 1.02 SD) mountain lions/100
km2. We estimated the proportion of males in the
population was 0.41 (95% CI ¼ 0.26–0.61).
Extracting estimates from the two management
units of interest, in HD 250 we estimate a median
of 82 (95% CI ¼ 54, 141) mountain lions,
corresponding to a median density of 4.5
mountain lions/100 km2 and a median of 79
(95% CI ¼ 51, 137) mountain lions in HD 270,
corresponding to a median density of 5.2
mountain lions/100 km2.

Effects of including habitat quality
on density estimates

Including the RSF as a covariate on the
distribution of activity centers reduced estimated

Table 1. Spatial capture-recapture model estimates for the total number (N ) and density of mountain lions/100

km2 in the 5912 km2 statespace in western Montana during winter 2012–2013. Sex and search effort (Effort) are

included as covariates on baseline detection probability and the parameter rsex allows for the scale of activity

ranges to vary by sex. An existing resource selection function (RSF) was included as a covariate on the density

of activity centers across the statespace. The 95% CI represent the Bayesian credible intervals. The goodness of

fit (GOF) p-value represents the GOF p-value for the encounter model with values between 0.05 and 0.95

indicate an adequate fit. EðncapÞ represents the 95% credible interval of the expected number of captured

individuals given the estimated point process and encounter process, and values including ncap¼ 62, indicate

adequate fit.

Model N Median density 95% CI GOF p-value E(ncap)

Effort þ RSF 201 3.4 2.4–5.7 0.64 56–84
Effort þ RSF þ Sex 229 3.9 2.6–7.7 0.73 55–85
Effort þ RSF þ rsex 214 3.6 2.5–5.8 0.66 56–84
Effort þ RSF þ Sex þ rsex 226 3.8 2.6–6.5 0.73 50–81
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mountain lion densities across all models (Fig. 3,
Table 3), and had mixed effects on extrapolated
densities in the two management units of
interest. Comparing the best model with and
without the RSF covariate, we found estimated

abundance and density was reduced and the

effective sampling area was similar (Fig. 4).

Median density was 44% less in models with

the RSF covariate (3.6 lions/100 km2; 95% CI ¼
2.4, 7.4) compared to the average of models

Table 2. Median parameter estimates and 95% Bayesian credible intervals from spatial capture-recapture models

of mountain lion abundance in western Montana during winter 2012–2013. Sex and search effort (Effort) are

included as covariates on baseline detection probability and the parameter rsex allows for the scale of activity

ranges to vary by sex. Female r and Male r represent estimated values for female and male mountain lions. An

existing resource selection function (RSF) was included as a covariate on the density of activity centers across

the statespace.

Model Female r Male r beffort bsex bRSF

Effort þ RSF 0.71 (0.50, 1.00) 0.71 (0.50, 1.00) 0.91 (0.67, 1.15) . . . 0.84 (0.62, 1.00)
Effort þ RSF þ Sex 0.68 (0.51, 1.00) 0.68 (0.51, 1.00) 0.89 (0.66, 1.13) �0.20 (�1.33, 0.48) 0.66 (0.51, 0.82)
Effort þ RSF þ rsex 0.66 (0.50, 0.98) 0.67 (0.49, 1.02) 0.89 (0.65, 1.17) . . . 0.68 (0.43, 0.87)
Effort þ RSF þ Sex þ rsex 0.62 (0.45, 0.93) 0.85 (0.53, 1.94) 0.90 (0.66, 1.19) �0.97 (�2.40, 0.18) 0.63 (0.45, 0.94)

Fig. 2. The spatial densities of mountain lions/4 km2

across the statespace in the Bitterroot Watershed of

western Montana estimated from the best model

assuming uniform distribution of activity centers

(Effortþ Sexþ rsex; A) and best model that estimated

the distribution of activity centers as a function of the

resource selection function (RSF, Effort þ Sex þ rsex þ
RSF; B) for sampling conducted during winter 2012–

2013.

Fig. 3. Effects of including a pre-existing mountain

lion resource selection function (RSF) as a covariate on

the distribution of activity centers on estimated

median mountain lion population density (mountain

lions/100 km2) the Bitterroot Watershed of western

Montana during winter 2012–2013 from 16 candidate

spatial capture-recapture models. The uniform model

estimates are based on a prior assumption of uniform

distribution of activity centers and did not include RSF

as a covariate on the distribution of activity centers.

Error bars represent 95% credible intervals.
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without the RSF covariate (5.2 lions/100 km2; 95%
CI¼ 3.4, 8.8). The inclusion of the RSF improved
precision by decreasing the standard deviation
by 7% and decreasing the width of 95% credible
intervals by 10%. Within the two management
units of interest, median density was 17% less in
the best model with the RSF covariate (4.5; 95%
CI ¼ 2.9, 7.7) as compared to the same model
without the RSF covariate (5.4; 95% CI¼ 3.4, 9.2)
in lion management unit 250 and 4% greater in
the best model with the RSF covariate (5.2; 95%
CI ¼ 3.4, 9.1) as compared to the same model
without the RSF covariate (5.0; 95% CI¼ 3.1, 9.0)
in lion management unit 270.

Effects of including harvest on density estimates
Treating harvested individuals as live captures

did not create a significant bias in the detection
process by introducing individuals that could not
be detected after removal. When samples from
harvested individuals were treated as live cap-
tures, we estimated a median density of 3.9 (95%
CI¼ 2.6, 6.7) mountain lions/100 km2, which did
not represent a significant difference from the
model that masked these individuals from
sampling periods after they had been harvested
(3.8, 95% CI¼ 2.6, 6.5). Similarly, we observed no
significant differences in any of the parameter
estimates from models fit with these two
permutations of the data.

The dead recovery component of the model
did have a substantial effect on results by
increasing sample size. When captures from
harvested individuals were excluded from the
sample, the data set had 50 total captures of
which 5 were recaptures. With this reduced data

set, we estimated a median density of 6.8 (95% CI
¼ 2.7, 16.6) mountain lions/100 km2. This median
density represented a 78% increase over the
model fit with the complete data set (3.8, 95%
CI ¼ 2.6, 6.5). Moreover, with a reduction in
sample size, the precision of the estimate
decreased substantially. The standard deviation
increased by 277% and the 95% credibility
interval width increased by 251%. The effects
on our estimate of density manifested through
poor estimates of the sex-specific parameters on
both detection probability and the scale of the
activity distribution. Removing samples from
harvested individuals eliminated all recaptures
of male individuals such that the sex-specific
parameters could not be estimated.

DISCUSSION

Our results indicate that incorporating prior
knowledge of animal habitat selection into
spatial capture-recapture models may improve
model fit and the precision of the abundance
estimates. In this case, the model where the
probability of an activity center being located in a
grid cell was a positive function of an existing
RSF reduced the overall estimate of abundance
by 44%, the SD by 7% and the CI width by 10%,
an important improvement in both biological
realism (i.e., high quality habitats had higher
density than lower quality habitats) as well as
precision of estimates. This approach to SCR
modelling that increases the precision of esti-
mates may increase the applicability of SCR
modelling as an applied tool for monitoring
trends in population abundance and effects of

Table 3. Spatial capture-recapture model estimates of median mountain lion density/100 km2 in western Montana

during winter 2012–2013 for 8 models with a uniform prior distribution on activity centers and 8 models with a

resource selection function (RSF) included as a covariate on the density of activity centers across the statespace.

Sex and search effort (Effort) are included as covariates on baseline detection probability and the parameter

rsex allows for the scale of activity ranges to vary by sex. The 95% CI represent the Bayesian credible intervals.

Model Median density 95% CI Median density 95% CI

Distance 4.8 3.2–7.5 3.2 2.2–5.1
Sex 5.1 3.3–8.6 3.8 2.4–16.4
rsex 5.1 3.3–8.8 3.6 2.4–5.9
Sex þ rsex 5.3 3.5–9.7 3.5 2.4–5.7
Effort 5.1 3.3–7.9 3.4 2.4–5.7
Effort þ Sex 5.6 3.7–10.4 3.9 2.6–7.7
Effort þ rsex 5.2 3.4–8.5 3.6 2.5–5.8
Effort þ Sex þ rsex 5.3 3.5–9.3 3.8 2.6–6.5
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various management actions on these trends.
The overall strength of the SCR approach is the

ability to explicitly estimate density over a
defined area and account for animals whose
activity ranges overlap the periphery of the area
surveyed. This is particularly important for large
carnivore species that tend to be wide-ranging
and violate traditional capture-recapture geo-
graphic closure assumptions. For example, we
estimated the location of activity centers across
the statespace and calculated a statespace densi-
ty, then estimate the density across two defined
areas of interest (the hunting districts) as a
function of the number of activity centers within
the area of the hunting districts. In this manner,
animals whose activity ranges overlap the
periphery of the hunting districts are accounted
for. These strengths add ecological realism, and
address the challenge of comparing estimates
across studies. The differences in estimated
density between the statespace and management
units of interest highlight the fact that density
estimates are sensitive to the area over which the
density estimates are generated. Thus, the ability
to generate spatially explicit spatial abundances
as a function of underlying habitat quality
through the SCR approach may improve appli-
cability of extrapolated density estimates beyond
a given study area, making the approach more
relevant to wildlife managers making decisions
for larger landscapes rather than distinct study
areas. Further improvements and refinements to
SCR methods, including pooling data across
study areas (Howe et al. 2013) or data sources
(Gopalaswamy et al. 2012) will continue to
improve rigor and reliability of SCR methods
for monitoring trends in wildlife population
abundance.

Our methods provide a method of integrating
harvest into Bayesian SCR models. Similar
methods exist within the likelihood framework
(Borchers and Efford 2008, Efford 2014), however
harvest has not been previously included within
the Bayesian framework. SCR models have been
applied to other species, for example, wolverines
(Gulo gulo) and Lynx (Lynx lynx; Royle et al. 2011,
Blanc et al. 2013) with potentially open harvest
seasons without explicitly considering effects of
ongoing harvest. Given that most large carnivore
species are harvested or subject to management
removals, our dead-recovery approach is likely to

Fig. 4. Comparison of SCR model parameters

estimating mountain lion density in the Bitterroot

Watershed of western Montana during winter 2012–

2013 that include RSF as a covariate on activity center

distributions (black line) and with uniform distribution

of activity centers (grey line). Panel (A) shows the

effects of the RSF covariate on posterior probability

densities of abundance over the entire statespace.

Panel (B) shows the effects on estimated population

density (mountain lions/400 km2) over the entire

statespace.
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be very useful for future studies with open
harvest seasons.

Our median estimates of 4.5 and 5.2 indepen-
dent mountain lions/100 km2 in the management
units of interest represent the estimated density
of a hunted population living sympatrically with
wolves, and are higher than previously pub-
lished estimates of mountain lion densities
(Hornocker and Negri 2009). There could be
important methodological as well as ecological
reasons for our high estimates. Most published
mountain lion density estimates are based on
intensive, multi-year marking, radiocollaring and
population monitoring methodologies that gen-
erate a mean minimum population density
estimate. These studies assume that all individ-
uals within the study population are detected, an
individual’s presence in the population may be
backdated based on age to account for their
presence prior to detection, and the study area
includes the annual ranges of radiocollared
mountain lions (Hornocker and Negri 2009).
However, even within these types of intensive
radiocollaring studies differences in sampling
and estimation methodologies make compari-
sons of mountain lion density across study areas
challenging. Specifically, the inclusion of different
sex-age classes and, crucially, differences in area
over which density is calculated (i.e., winter
range vs. annual range) differs between studies
and obviously challenges comparisons. Using
SCR methods, we do not assume perfect detec-
tion and we include transient individuals in the
estimate.

Additionally, two important ecological fac-
tors may be contributing to a high mountain
lion density in the study area. First, mountain
lion harvest in the study area has been
conservative during the past decade and the
population has likely increased throughout this
period of conservative harvest management.
Second, the abundance and diversity of prey in
this area, resulting partially from ungulate
management practices, likely sustains a higher
than average mountain lion population (Car-
bone and Gittleman 2002, Karanth et al. 2004).
The potential for individuals to move into the
study area to occupy territories vacated by
harvested individuals could result in overesti-
mating mountain lion density, as our estimate
is designed as an estimate of density pre-

harvest (i.e., on the first day of the sampling
period). However, the study area was located
within a watershed under uniform mountain
lion harvest management, and source-sink
dynamics are unlikely in this scenario. Further,
we designed our sampling plan to minimize
the potential for movement into the study area
by minimizing the duration of sampling and by
concentrating our search effort during the
period prior to the hunting season opening to
the general public (see Appendix D). Although
subtle shifts in territory use may have occurred
as nearby animals were harvested, this effect
would positively bias our estimates of activity
range and negatively bias our estimates of
population density. Therefore, shifting territo-
ries during the sampling period is not likely to
explain our high density estimates. Finally,
while SCR models do not necessarily allow
flexibility in violating the closure assumption
(but there are open SCR models that can do
so), the explicit integration of space combined
with choice of effective study area boundaries
can minimize potential problems with closure
compared to non-spatial capture-recapture
models (Royle et al. 2013a).

The DNA sampling methodology used in
this study reduces the time and effort involved
in capturing and handling animals, but does
not provide information about the age, body
condition or other individual characteristics of
an animal. Additionally, the ability to distin-
guish between transient and resident individu-
als is limited. For some areas and species
transients may constitute a major portion of
the population, and methodological develop-
ment may be required to adjust density
estimates for these areas. For many other large
carnivores, transient or dispersing individuals
comprise a significant portion of the harvest-
able population (e.g., wolves in Alaska where
50% of the harvest were such animals; Adams
et al. 2008). We suggest that for mountain lions
including transient animals in the population
estimate is appropriate because these animals
are present, likely affect the dynamics of local
ungulate populations, and are legally harvest-
able during the hunting season. We also expect
over the long-term the number of transients
moving into and out of the study area are
roughly equal, resulting in a consistent effect
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on both mountain lion density and ungulate
populations.

In our study, like many other studies of large
carnivores, detection probability was relatively
low, 0.09/month for males and 0.21/month for
females with average effort at the center of the
home range of the lion. Despite being low, our
detection rates were similar to other large
carnivore studies; for example, detection prob-
ability in non-spatial capture-recapture ranged
from 0.12 to 0.26 for grizzly bears in British
Columbia (Boulanger et al. 2002), from 0.11 to
0.26 for Bengal tigers in non-spatial models in
India (Karanth and Nichols 1998), from 0.01 to
0.04/night for tiger density estimated in a
spatial capture-recapture model (Royle et al.
2009), and from 0.05 to 0.09/period for jaguars
in Brazil (Sollmann et al. 2013). In our case,
with mountain lions, our detection probabilities
resulted in reduced precision of our parameter
estimates, increased estimates of population
abundance well beyond the raw number of
individuals identified, and emphasizes the
cryptic nature of mountain lions. Future stud-
ies of large carnivores could probably improve
precision of SCR estimates by incorporating
existing information regarding habitat quality
(or if unavailable, radiocollaring and estimating
a RSF or some other index of habitat suitabil-
ity) or developing sampling plans that target
recaptures of sampled individuals to improve
the estimation of the detection function (i.e.,
deliberately resampling areas that have previ-
ously been sampled).

We recommend that the decision to approach
future large carnivore studies using the SCR or
traditional radiocollaring approach be made
based on the questions and applications of
interest. For monitoring long-terms trends in
animal abundance, non-invasive sampling tech-
niques for capture-recapture studies provide a
fast and economical method to estimate the
number of individuals and monitor trends in
segments of a population across time. The SCR
method for the analysis of capture-recapture
data provides estimates of density using a
repeatable methodology which makes compar-
isons across time and space possible. Studies
seeking to estimate vital rates, assess space use,
distinguish between residents and transients or
understand cause–specific mortality may be

best approached using traditional tracking
methodologies or capture-recapture approach-
es.
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