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EXECUTIVE SUMMARY 

This report summarizes the results of a 4-year field study to assess the effects of livestock 
grazing management and rangeland conditions on the population and spatial ecology of sharp-
tailed grouse, grassland birds, and their predators. The primary objectives of this study were 1) 
investigate rest-rotation grazing as a rangeland management technique to improve habitat 
conditions for sharp-tailed grouse and 2) develop a mechanistic understanding of the effects of 
grazing management on the occurrence and abundance of grassland passerines and meso-
predators. Our study site was located in eastern Montana on properties enrolled in the Upland 
Game Bird Enhancement Program and adjacent properties not enrolled in conservation programs 
with prescriptive grazing. Field work was conducted during 2016–2019 and final analyses 
completed during 2020–2021. In this report we present study results for all original project 
objectives, including those completed during preceding years, as well as additional objectives. 
1. We addressed seven potential effects of grazing management and habitat conditions on 

sharp-tailed grouse: nest site selection, nest survival, breeding season home ranges and 
habitat selection, brood habitat selection, adult female survival, and population growth and 
viability.  Our monitoring efforts during the 4-year study period included 12 leks, 118 radio-
marked females monitored for 180 bird-years, 7,178 individual locations of radio-marked 
females, 188 nesting attempts, and 95 broods that were monitored until they failed or reached 
independence at 60 days. 
 
1.1. Nest site selection and survival – We located 188 grouse nests (147 first nests, 41 

renesting attempts) laid by 128 individual females during 2016–2018. We evaluated nest 
site selection using resource selection functions calibrated with generalized linear mixed 
models. Nest site selection was not affected by grazing system. Instead, females selected 
nest sites in areas with high grassland contagion and nest site selection was best 
predicted by local visual obstruction (VOR; and index of nest concealment) and the 
percentage of new grass, residual grass, and shrubs. Nest survival varied by year and 
ranged from 0.29 ± 0.06 in 2016 to 0.48 ± 0.07 in 2018. We evaluated the effects of 
habitat conditions and management at two spatial scales. At the home-range scale, daily 
nest survival was negatively related to proximity to roads and positively related to 
proportion of the home range classified as grassland. At the nest site scale (within 6 m of 
a nest), nest survival was largely determined by VOR. Daily nest survival increased with 
proportion grassland (β = 0.16 ± 0.10), distance to road (β = 0.21 ± 0.11), and VOR up 
to a threshold of 20–30 cm, as represented by the pseudo-threshold model (β = 0.29 ± 
0.11). Grazing system did not influence nest site selection or nest survival. For nests 
within the rest-rotation system (n=57), there was no evidence for an effect of the timing 
of grazing (grazed during the growing season, grazed post-growing season, or rested 
entire year) on nest survival. Estimates of overall nest survival in the three treatments 
overlapped entirely. 
 

1.2. Breeding season home ranges and habitat selection – Mean breeding season home range 
size for 118 females was 489 ± 41 ha but varied from 58–3,717 ha. Home range sizes 
were less variable within pastures managed with summer rotation grazing compared to 
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those in other systems, but grazing system did not have a significant effect on average 
size of home ranges. Density of edge habitat within the home range was negatively 
related to the size of breeding season home ranges. Females strongly selected for mixed 
grass prairie habitats, even though roughly 83% of the entire study area was composed 
of mixed grass prairie. Females strongly selected against cropland during the breeding 
season, even though only 4% of the study area was cropland. We found no evidence that 
grazing system affected breeding season habitat selection of home ranges. Within home 
ranges, females selected for areas farther from roads (β = -0.047 ± 0.001SE). In general, 
individual variability in habitat selection was high. 
 

1.3. Brood success and habitat selection – During 2016–2018, we monitored 95 broods to 
estimate survival and document habitat use. Twenty-two broods spent the majority of the 
time (>70% of brood locations) in rest-rotation pastures, 30 spent the majority of time in 
summer rotation pastures, 29 spent the majority of time in season-long pastures, and 14 
split time between multiple grazing systems. Brood success, calculated as the proportion 
of broods fledging ≥1 chick to 14-d of age, was 0.59 ± 0.10, 0.80 ± 0.07, 0.66 ± 0.09, 
and 0.43 ± 0.13 for broods located on the rest-rotation, summer rotation, season-long and 
multiple systems, respectively. Of broods that survived to fledging, the proportion of 
chicks that survived was 0.55 ± 0.08, 0.54 ± 0.06, 0.59 ± 0.07, and 0.32 ± 0.09 for 
broods located on the rest-rotation, summer rotation, season-long and multiple systems, 
respectively. We developed resource selection functions to evaluate hierarchical habitat 
selection of broods in relation to ecological site descriptions and their relative conditions 
at two orders of habitat selection. Soil type influenced second-order selection of home 
ranges by brood-rearing females, whereas similarity index influenced third-order 
selection within home ranges. We could not confirm our hypothesis that differences in 
relative habitat selection among soil types resulted from differences in vegetation 
structure or functional group composition. Within home ranges, females selected for 
sites with a lower similarity index, which were generally associated with higher 
variability in fine-scale vegetation density (e.g., VOR) and forbs, and lower shrub cover. 
 

1.4. Adult female survival – We evaluated survival for 153 female sharp-tailed grouse, some 
of which were monitored in multiple years, resulting in 180 bird-years (2016: n = 55, 
2017: n = 64, 2018: n = 61). Of the 180 bird-years, 66 represented females primarily 
using the rest-rotation system, 60 using the summer rotation system, 46 using the season-
long system, and 8 splitting time among multiple grazing systems. Overall, 86% of 
mortality events were due to predation, with the remaining mortality events due to 
hunter harvest (8%) or unknown causes (6%). Overall survival (± SE) during the 5-
month breeding season for female sharp-tailed grouse across all years and grazing 
systems was 0.65 ± 0.04, which corresponds to a monthly survival rate of 0.91 ± 0.005. 
Despite significant annual variation in precipitation, breeding season survival did not 
differ significantly among the 3 years of study. There was also no difference in breeding 
season survival between female age classes (baseline: second-year; Cox proportional 
hazards HR = 1.19, 95% CI = 0.72–1.96, Z = 0.69, P = 0.49), or among grazing systems 
(baseline: season-long; Cox proportional hazards HR for summer-rotation = 1.13, 95% 
CI = 0.15–8.82, Z = 0.12, P = 0.90; Cox proportional hazards HR for rest-rotation = 
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1.49, 95% CI = 0.17–13.29, Z = 0.36, P = 0.73). In contrast, non-breeding season 
survival differed among the 3 study years with non-breeding survival in 2017 
significantly lower than in either 2016 or 2018. Overall survival during the 7-month non-
breeding season was 0.78 ± 0.07 in 2016, 0.43 ± 0.08 in 2017, and 0.71 ± 0.08 in 2018, 
with monthly survival rates of 0.97 ± 0.007, 0.89 ± 0.005, and 0.95 ± 0.008 in 2016, 
2017, and 2018, respectively. Annual survival for the population was 0.50 ± 0.05 in 
2016, 0.28 ± 0.04 in 2017, and 0.46 ± 0.05 in 2018. Overall annual survival was similar 
for females who spent the majority of their time in the three grazing systems; however, 
we observed variability in seasonal mortality risk among the three systems. Mortality 
risk peaked in early May during the nesting period in all grazing systems, but the 
increase in mortality risk during the nesting period was greatest in the rest-rotation 
system, with a 61–82% higher risk of mortality in the rest-rotation compared to season-
long and summer rotation systems. 
 

1.5. Population growth and viability – We developed an integrated population model (IPM) 
to estimate annual rates of finite population changes and evaluate the cumulative effects 
of livestock grazing management on sharp-tailed grouse populations. This effort yielded 
estimates of a complete suite of population vital rates, including nest initiation rates of 
first and renesting attempts, clutch sizes of first and renests, hatchability of nests, nest 
survival of first and renests, chick survival, juvenile survival, recruitment rates, annual 
survival of yearlings and adults, as well as finite rates of population growth (λ). Results 
indicated declining population of sharp-tailed grouse at our study area during 2016–
2018, with the largest estimated decrease between 2017 and 2018 (λ = 0.69; 95%CrI: 
0.54–0.84) resulting from depressed fecundity likely due to drought. We did not find 
support for cumulative effects of grazing system on population growth rates of sharp-
tailed grouse; 95% credible intervals of rates of population change for each grazing 
system overlapped. 

 
2. We investigated the effects of livestock grazing management on the abundance and diversity 

of grassland songbirds. We used 1,830 point-count surveys and N-mixture models to estimate 
the abundance and diversity of grassland birds in relation to three livestock grazing systems: 
rest rotation, within season rotational grazing, and continuous season-long grazing. In 
addition, we surveyed vegetation structure and composition at all bird survey locations. 
 
2.1. Local abundance – We detected a total of 68 species of birds, 31 of which were 

grassland-associated species.  In contrast to our expectations, rest-rotation grazing did 
not support greater local abundances of three native ground-nesting grassland obligate 
birds relative to summer-rotation or season-long grazing systems during our 2-year 
study, despite modest differences among grazing systems in vegetation composition and 
structure. Rather, associations among local abundance, grazing system, stocking rate, 
and rangeland production potential were species-specific and do not support ubiquitous 
grazing management recommendations for grassland bird conservation. 
 

2.2. Species richness and community composition – We recorded 21 grassland-associated 
species in pastures within rest-rotation grazing systems, 24 species in two-pasture 
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summer-rotation grazing systems, and 22 in season-long grazing systems. Grassland bird 
community size and composition was similar across the three grazing systems; only 2% 
of the variation in community composition could be attributed to the livestock grazing 
system. 

 
3. We used camera traps to evaluate the effects of livestock grazing management and other 

habitat characteristics on mesocarnivore occupancy (i.e., relative use). We recorded 178 
mesocarnivore detections during 3,535 camera trap days at 164 remote camera sites located 
within 8 pastures managed for cattle grazing. Relative use of mesocarnivores was highest in 
rest-rotation grazing systems, followed by season-long and summer-rotation grazing systems, 
and generally increased with stocking rates of livestock. 
 

4. We contracted with Dr. Todd Cross and the USFS National Genomics Center for Wildlife 
and Fish Conservation to evaluate genetic diversity and pair-wise relatedness of female 
sharp-tailed grouse captured during the study. The per-locus number of alleles ranged from 2 
to 27 (median = 13) and the population had observed levels of heterozygosity comparable to 
other prairie and sage-grouse populations in in-tact habitats (mean HO = 0.78 ± 0.14 ; 
expected mean heterozygosity (HE = 0.83 ± 0.11). The proportion of shared alleles (DPS) 
varied from 0 to 0.96 indicating a full gradient of genetic relatedness among individuals in 
the study population. 

 
5. We published the results of this study in six peer-reviewed scientific articles and have 

submitted an additional two that are currently in review at peer-reviewed journals (below).  
In addition, we published two graduate dissertations and two extension/outreach publications 
and gave 26 seminars/presentations at professional conferences, workshops, and agricultural 
outreach events. The project funded the training of two graduate students (1 Ph.D., 1 M.S.), 
one post-doctoral researcher, and 21 undergraduate field and laboratory technicians. 

Published products († indicates graduate and undergraduate students; listed chronologically): 
 
Vold. S.T.† and L.B. McNew. 2018. Effects of livestock grazing management on occupancy of 

mesocarnivores in a northern mixed-grass prairie ecosystem.  Montana State University College of 
Agriculture and Extension Research Report 4:40–44. 

Vold, S.K.†, L.I. Berkeley, and L.B. McNew. 2019. Effects of livestock grazing management on 
grassland birds in a northern mixed-grass prairie ecosystem. Rangeland Ecology and Management 
72:933–945. 

Milligan, M.C.†, and L.B. McNew. 2019. Effects of scavenging on assumptions of mortality analyses of 
radio-marked gamebirds. Northwestern Naturalist 100:197–205. 

Milligan, M.C.† and L.B. McNew. 2019. Does cattle grazing affect nesting sharp-tailed grouse?  Montana 
State University College of Agriculture and Extension Research Report 5. 

Milligan, M.C.†, L.I. Berkeley, and L.B. McNew. 2020. Effects of rangeland management on the nesting 
ecology of sharp-tailed grouse. Rangeland Ecology and Management 73:128–137. 

Milligan, M.C.†, L.I. Berkeley, and L.B. McNew. 2020. Habitat use of sharp-tailed grouse in rangelands 
managed for livestock. PloSOne 15(6): e0233756.  
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Milligan, M.C.†, L.I. Berkeley, and L.B. McNew. 2020. Survival of sharp-tailed grouse under variable 

livestock grazing management. Journal of Wildlife Management 84: 1296–1305. 

Milligan, M.C.†, and L.B. McNew. 2021. Does researcher activity impact the nest survival of sharp-tailed 
grouse? Wildlife Biology, accepted 6/2021. 

McNew, L., A. Lipinski, and M. Milligan†. In review. Evaluating the cumulative effects of livestock 
grazing on wildlife with an integrated population model. Submitted to Frontiers in Ecology and 
Evolution. 

Macon, L.†, M. Milligan†, J. Mosley, and L.B. McNew. In review. Using ecological site condition to 
evaluate habitat selection by sharp-tailed grouse broods. Submitted to Rangeland Ecology and 
Management. 
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EFFECTS OF LIVESTOCK GRAZING MANAGEMENT ON THE ECOLOGY OF SHARP-
TAILED GROUSE, GRASSLAND BIRDS, AND THEIR PREDATORS IN NORTHERN 
MIXED GRASS PRAIRIE HABITATS 
OBJECTIVES 
Objective 1: Investigate rest rotation grazing as a rangeland management technique to 
improve sharp-tailed grouse fecundity and survival.  
Methods: 

Fecundity.—Sharp-tailed grouse were trapped at 12 leks (5 in rest-rotation pastures, 3 in 
summer rotation pastures, and 4 in season-long pastures) using walk-in funnel traps during 
March-May, 2016-2018. We recorded standard morphometrics including body mass, wing chord, 
tarsus length, and culmen length, and fitted all birds with a uniquely numbered metal leg band. 
Birds were sexed and aged by plumage characteristics. Males were fitted with a unique 
combination of color bands to allow for resighting at leks next year. We fit captured females 
with 18-g necklace-style radio-transmitters with a 6-8 hour mortality switch and an expected 
battery life of 12 months (model A4050; Advanced Telemetry Systems, Insanti, MN). Previous 
work found no impact of necklace-style radio-transmitters on prairie-grouse demography (Hagen 
et al. 2006). All animal handling was approved under Montana State University’s Institutional 
Animal Care and Use Committee (Protocol #2016-01). 
Radio-marked females were located by triangulation or homing ≥3 times/week using portable 
radio receivers and handheld Yagi antennas during the nesting and brood-rearing period (April—
August). When females localized in an area and their estimated location did not change for 2 
successive visits, we assumed that the female was sitting on a nest. For half of the females, we 
used portable radio receivers and handheld Yagi antennas to locate and flush the female so eggs 
could be counted and the nest location recorded with a handheld GPS unit. We marked nest 
locations with natural landmarks at a distance ≥ 25 m to aid in relocation. Nest sites were not 
visited again until it was determined that the female had departed (i.e., was located away from 
the nest for ≥ 2 days during incubation and ≥ 1 day after expected hatch date) due to successful 
hatching of the clutch or failure due to either predation or abandonment. Nesting females were 
otherwise monitored by triangulation from a distance > 25 m. Thus, nest sites for half of the 
females were only disturbed by the presence of an observer a maximum of 1 time during the 
laying and incubation period. The remaining half of the females were never flushed and nest 
attempts were monitored from a distance of > 25 m to evaluate whether the protocol of flushing 
females has a negative effect on nest survival. A female was assumed to be incubating if she was 
located in the same location for 2 consecutive visits and nest sites were only visited after the 
female was located away from the nest for ≥ 2 days during incubation or ≥ 1 day after expected 
hatch date. 
Once the female departed the nest, we classified nest fate as successful (≥1 chick produced), 
failed, depredated, or abandoned.  Nests were considered abandoned if eggs were cold and 
unattended for >5 days.  Nests were considered failed if the eggs were destroyed by flooding, 
trampling by livestock, or construction equipment.  Nests were considered depredated if the 
entire clutch disappeared before the expected date of hatching, or if eggshell and nest remains 
indicated that the eggs were destroyed by a predator. When a predation event occurred, the egg 
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remains were evaluated and the area was searched for predator sign.  For successful nests, 
hatchability was calculated as the proportion of the total clutch that hatched and produced chicks.  
Eggs that failed to hatch were opened to determine stage of development and possible timing of 
embryo failure.   
Successful broods were relocated ≥3 times/week until failure. Pre-fledging brood survival was 
estimated by conducting flush counts between 14 and 16 days post hatch. Fledging was 
considered to occur at 14 days post hatch because at that point chicks are able to thermoregulate 
and are capable of weak flights (Pitman et al. 2006). Flush counts were conducted at dawn when 
chicks were close to radio-marked females to determine the number of surviving chicks in the 
brood. After females were flushed, the area was systematically searched and the behavior of the 
female observed to assess whether chicks were present but undetected. For counts of 0 chicks, 
the brood female was flushed again the following day to be certain no chicks remained in the 
brood. Broods were considered successful if ≥ 1 chick survived until fledging at 14-d post-hatch 
(Pitman et al. 2006). Flush counts were repeated at 14, 30, 45, and 60 days post-hatch or until we 
were confident that no chicks remained with the female.  
We monitored radio-marked females ≥3 times per week to estimate survival. Transmitters were 
equipped with a mortality switch that activated after 6–8 hours of inactivity. Once the mortality 
switch activated, transmitters were located and the area searched to determine probable cause of 
death. Mortality events were classified as either predation, hunter, other, or unknown. Predation 
mortalities were further identified as either mammal, avian, or unknown predator. A mortality 
event was classified as mammalian predation if bite marks, chewed feathers, or mammalian 
tracks were present. Mortality was determined to be avian predation if the carcass had been 
decapitated and/or cleaned of the breast muscle with no bite marks, or if the feathers had been 
plucked. If there were conflicting signs of mortality, the event was classified as unknown 
predation. Females were censored from the study if their collars were found with no sign of 
death or if they could not be located for ≥2 months. 
We evaluated habitat conditions at each nest and brood flush site within 3 days of hatching or 
expected hatch date in the case of failure. We recorded visual obstruction readings (VOR) at the 
nest bowl and at four points 6 m from the nest in each cardinal direction. At each point, VOR 
was measured in each cardinal direction from a distance of 2 m and a height of 0.5 m using a 
Robel pole (Robel et al. 1970). We estimated non-overlapping vegetation cover (percent new 
grass, residual grass, forbs, shrubs, bare ground, and litter) at 12 subsampling locations within 6 
m of the nest using a 20 × 50 cm sampling frame (Daubenmire 1959). At each subsampling plot, 
we measured the heights of new grass, residual grass, forbs, and shrubs. We also estimated shrub 
cover using the line-intercept method, recording the species, height, and length of each shrub 
intersecting the transect. For nests, we conducted parallel sampling at randomly selected points 
within a study area defined by a minimum convex polygon placed around the leks of capture and 
buffered to 2 km. For broods, we conducted parallel sampling at paired points in a randomly 
determined direction and distance (maximum of 250 m) from each flush location to represent 
available habitat within the average daily distance traveled by broods (Goddard et al. 2009). 
Random points that fell within unsuitable habitat (i.e., water, cultivation) or were located on 
properties to which we did not have access were replaced. 
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We also measured habitat conditions at the home range scale (500 ha, based on estimated home 
range sizes of sharp-tailed grouse during the breeding season, see below) under the assumption 
that the home range contained the resources utilized by a female during the nesting season. The 
home range area was defined as a circular plot with a 1,300-m radius centered on each nest, 
brood, and random location. We calculated habitat variables at the home range scale using 
remotely sensed data and ArcMap 10.4. We included road datasets for both Montana and North 
Dakota and calculated the distance to paved and gravel roads from the nest bowl (Montana State 
Library, North Dakota GIS Hub Data Portal). Paved roads, including state highways, had higher 
traffic volumes and were assumed to represent a different level of disturbance than gravel roads. 
We also included the locations of oil pads which represented another form of disturbance in the 
study area and calculated the distance to the nearest oil pad from the center of each home range. 
Landcover analyses utilized the 30 m resolution LANDFIRE data depicting vegetation type 
(LANDFIRE 2013).  We measured the distance from the center of each home range to the 
nearest patch of non-grassland habitat. In addition, we used the Patch Analyst Extension in 
ArcMap to calculate the proportion of grassland, the density of edge habitat, and grassland shape 
complexity.  
We collected stocking information from cattle producers for every pasture in which radio-
marked sharp-tailed grouse were located. For each pasture, we recorded the type of animal 
(cow/calf pairs, heifers, bulls, or horses), number of head, and the dates when animals were in 
the pasture. We calculated the following grazing management variables: grazing system (rest-
rotation, summer rotation, season-long), stocking rate (AUM ha-1), stocking intensity (AU ha-1), 
stocking duration (in months), and season of stocking (growing season [May—July], post-
growing season [August—November], winter [December—April], or rest [no grazing for entire 
year]). 
We used field data to estimate eight demographic parameters related to fecundity for sharp-tailed 
grouse (Table 1). Some of these parameters, including clutch sizes and chicks per egg laid 
(CPE), can be estimated directly from field data. However, other parameters are observed 
imperfectly. Nests are not observed from the initiation date and nests that fail before discovery 
must be considered to make population-level inferences. To account for imperfect observation, 
we used the nest survival model in Program MARK to calculate maximum likelihood estimates 
of daily nest survival (NSURV) following the methods described below.  
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Table 1. Demographic rates estimated for sharp-tailed grouse. 
Demographic Rate Description 
Nesting rate (NEST) The probability of a female initiating a nest. 

Clutch size (CS) The final clutch size per nest. Estimates generated for both first 
(CS1) and renesting (CS2) attempts. 

Nest survival (NSURV) The probability of a nest producing ≥1 chick.  

Renesting rate (RENEST) The probability of a female initiating a replacement nest after 
failure of the first attempt 

Chicks per egg laid (CPE) 
The proportion of eggs laid that produced chicks, or the viability 
of the eggs; calculated only for successful nests (≥1 egg 
hatched). 

Brood survival (BSURV) The probability that ≥1 chicks survived to fledging at 14-d post-
hatch 

Fledglings per chick 
hatched (FPC) 

The proportion of hatched chicks that survived to fledging 
conditional upon brood survival 

 
Nesting rate (NEST) was calculated as the percentage of females that attempted a nest. The 
probability of renesting (RENEST) was calculated as the number of observed renesting attempts 
divided by the number of unsuccessful first nests minus the number of females that had first 
nests but were unavailable to renest. A hen was considered unavailable if she was killed during 
the first nest attempt or was not relocated after the failure of a first nest attempt. Initial brood size 
was determined by the number of chicks that were known to hatch based on nest observations. 
Brood success (BSURV) was calculated as the proportion of broods that successfully fledged ≥1 
chick. Fledging success (FPC) was calculated as the proportion of chicks that survived until 
fledging among successful broods. Broods were included in the easement category if >70% of 
brood locations were within the easement boundaries, in the reference category if >70% of 
locations were in the reference area, and in the category “both” if they split their time between 
the two areas.  
Fecundity (F), or the number of female fledglings produced per female, is expressed as a 
function of these parameters using the following equation: 

𝐹𝐹 = �(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∗ 𝐶𝐶𝐶𝐶1 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1) + [(1 − 𝑁𝑁𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈1) ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 𝐶𝐶𝐶𝐶2 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2]� ∗ 𝐶𝐶𝐶𝐶𝐶𝐶
∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∗ 𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 0.5 

Bootstrapping procedures were used to calculate 85% confidence intervals for fecundity 
estimates by randomly drawing from the underlying distributions of input parameters (McNew et 
al. 2012). 
Nest success is defined as the probability of a nest producing ≥1 chick, whereas nest survival 
accounts for potential losses of nests before discovery. We constructed nest survival models 
using the RMARK package in Program R to calculate maximum likelihood estimates of daily 
nest survival and evaluate the effects of habitat conditions and management variables on daily 
nest survival during a 77-d nesting period during 28 April – 12 July (White and Burnham 1999, 
Dinsmore et al. 2002). Before fitting models, we examined correlations for each pair of variables 
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and if a pair was highly correlated (r ≥ 0.5, p < 0.05), we used single-factor models to determine 
which of the two variables accounted for the largest proportion of variation in daily nest survival. 
We considered the variable with the lowest model deviance to be the primary variable to 
consider in subsequent analyses. 
We evaluated nest survival models at both the habitat and management level and compared 
model sets using the criteria described above. For the habitat-level analysis, underlying effects 
included variables of nest attempt, female age, female condition, flushing effect, daily 
temperature, and three precipitation variables compared to a null model of constant daily nest 
survival (Goddard and Dawson 2009). Female condition was calculating by regressing body 
mass against the length of the wing chord using the reduced major axis method (Green 2001). 
Precipitation variables included daily precipitation with a 1-day time lag, growing season 
precipitation from the previous year (total precipitation from previous April to June), and 
available precipitation from that year (total precipitation from October to May). We then selected 
the most parsimonious models at each of the different spatial scales (nest- and home range level) 
and assessed them in the final candidate model set. The management-level analysis included all 
the models evaluated in the nest site selection analysis (described above), plus a model 
examining the effect of stocking density while the nest was active. Top variables from both the 
habitat- and management-level analyses were then combined in a final candidate model set to 
evaluate relative effects on nest survival. 
We also developed a separate set of candidate models to examine the effects of grazing variables 
on nests within the rest-rotation pastures (n=57) and evaluate effects on nest survival of the 
different treatments within the system (grazed during the growing season, grazed post-growing 
season, rested entire year).  
Overall nest survival for precocial species is the probability that a nest will survive the entire 
nesting period, defined as the mean laying plus incubation interval for grouse at our study sites 
(37-d). We calculated the overall nest survival probability with parametric bootstrapping, using 
the beta estimates and variance-covariance matrix from the top model in the nest survival 
analysis. Variance of overall nest survival was estimated with the delta approximation (Powell 
2007).  The average duration of incubation period (27-d) was determined from observations of 
our sample of successful nests and from previous work (Connelly et al. 1998). 

Survival.— We calculated cumulative breeding season survival of radio-marked females 
using staggered entry Kaplan-Meier models with package survival in Program R (version 3.5.1, 
R Foundation for Statistical Computing, Vienna, Austria). We created weekly encounter histories 
for each female for the 5-month period from 15 March to 15 August and encounter histories 
included the week of entry, week of exit, and event (0 = survived, 1 = mortality). We excluded 
females that died within a week of capture (n = 6) to account for any bias that might be due to 
capture stress. Data were both left- and right-censored to account for the staggered entry of birds 
into the sample and the loss of birds that left the study area (n = 9). Some females were 
monitored in multiple years, so we modeled individual identity as a random effect using the 
‘cluster’ function. We first tested whether the assumption of proportional hazards was met and 
then included an interaction with time for covariates for which the assumption was not met (Fox 
2002). We used Cox proportional hazards models to evaluate differences in breeding season 
survival among years, female age (second-year vs. after second-year), and grazing system (rest-
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rotation, summer rotation, season-long). For females with ≥ 30 locations (Seaman et al. 1999), 
we calculated the proportion of each grazing system within a female’s 50% kernel home range 
and assigned a grazing system based on the system containing ≥ 60% of the home range. To 
calculate 50% home ranges, we used the fixed kernel method (Worton 1989) with the default 
smoothing parameter using the adehabitatHR package in Program R. For females with < 30 
locations (28% of monitored females), we assigned a grazing system based on the system with 
the majority (≥ 60%) of that individual’s locations. Females for which one grazing system did 
not account for ≥ 60% of either the 50% kernel home range or locations were excluded from 
analyses.  
We calculated cumulative survival rates of radio-marked females for the 7-month non-breeding 
season separately using staggered entry Kaplan-Meier models with monthly encounter histories 
for each female for the period from September through March. We used the ‘cluster’ function to 
model individual identity as a random effect to account for females monitored in multiple years. 
Similar to analyses of breeding season survival, we used Cox proportional hazards models to 
evaluate differences in non-breeding season survival among years and female age (second-year 
vs. after second-year). Data for the non-breeding season was collected on a monthly basis, which 
precluded analyses evaluating differences in non-breeding season survival among grazing 
system. We used estimates of survival during the breeding and non-breeding seasons to calculate 
annual survival and variance of overall survival was estimated with the delta approximation 
method (Seber 1982).   
For both breeding and non-breeding season survival, we compared models using Akaike’s 
Information Criterion adjusted for small sample sizes (AICc) and model selection was based on 
both minimization of AICc and AICc weights (wi; Burnham and Anderson 2002). Parameters 
were considered uninformative if ΔAICc < 2.0 for models that differed by a single parameter or 
if 85% confidence intervals overlapped 1 for hazard ratios (Arnold 2010). The effects of year, 
female age, and grazing system are reported as hazard ratios (HR, eβ), where the ratio equals 1 if 
there is no difference in the risk of mortality among strata.  
We calculated hazard functions to evaluate seasonal patterns of mortality. We used the 
smoothing splines functions in package gss in Program R to calculate hazard functions based on 
weekly survival data (DelGiudice et al. 2006). Hazard functions assess the instantaneous risk of 
mortality in each week given that an individual had survived to that point. To avoid overfitting 
splines, we used the default value for the smoothing parameter. We calculated separate hazard 
functions for females in each of the three grazing systems to evaluate the effects of grazing 
management on seasonal patterns of mortality risk.  
We used Andersen-Gill models for survival to model the effects of habitat selection on mortality 
risk during the breeding season (Andersen and Gill 1982). For these models, we formulated 
another set of encounter histories for each female for the 5-month breeding season (15 March–15 
August). Each encounter history is structured so that the entry represents the interval between 
successive relocations of an individual and individual females have multiple encounter histories 
in the dataset. Encounter histories included the day of entry, day of exit, length of the interval, 
the animal’s fate at the end of the monitoring interval (0 = right-censored, 1 = mortality), and the 
covariates representing habitat features associated with each relocation event as measured at the 
end of the interval (Johnson et al. 2004). Mortality events were likely to occur at the end of the 
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interval and previous studies found no bias regarding when habitat features were measured 
within a relocation interval (Johnson et al. 2004). We fit the Andersen-Gill formation of the Cox 
proportional hazards model using the ‘coxph’ function in package survival in Program R and 
evaluated the spatial variation in risk factors for females relative to time-varying individual 
features, landcover, anthropogenic disturbance and rangeland management. Before fitting 
models, we examined correlations for each pair of explanatory variables (r ≥ 0.5; Supporting 
Information). We then used the ‘cox.zph’ function to test the assumption that hazards vary 
linearly across predictor variables (Fox 2002). 
We first examined single-variable models with habitat and individual time-varying covariates 
predicted a priori to affect grouse mortality risk. We evaluated mortality risk relative to time-
varying individual features, weather, anthropogenic disturbance, and landcover. Individual 
features included categorical variables representing whether a female had either an active nest or 
a brood. We obtained daily precipitation data from the National Oceanic and Atmospheric 
Association (NOAA) station in Sidney, MT, and calculated the total amount of precipitation 
during each monitoring interval to capture variation in environmental conditions. We digitized 
the locations of oil pads and roads, both forms of anthropogenic disturbance in our study area, 
and calculated the distance to the nearest oil pad or road from each point. Landcover analyses 
utilized the 30-m resolution LANDFIRE data depicting vegetation type (LANDFIRE 2013). We 
used the Patch Analyst Extension in ArcMap to calculate the density of edge habitat (total 
landcover edge length / polygon area) and the amount of cropland within a range of buffer 
distances (30, 75, 125, 200, 500, 750, 1000, 1300 m). A habitat patch edge was defined as an 
abrupt change between any of the three main habitat types (grassland, wooded draws, and 
cropland) and edge density was defined as the amount of patch edge relative to the area within a 
given buffer distance. In our study area, cropland consisted primarily of dryland wheat. We used 
an information-theoretic approach to first choose the spatial scale that best represented the 
relationship between mortality risk and each habitat variable. 
Our final candidate model set included 24 models that estimated the additive effects of 3 grazing 
management variables in combination with the important habitat and individual covariates based 
on preliminary analyses. Rangeland management variables included grazing system and stocking 
rate (AUM ha-1) during both the current and previous year. We compared Andersen-Gill models 
using AICc and based model selection on both the minimization of AICc (ΔAICc < 2 from best-
fit model) and AICc weights (Σwi > 0.3). Models that differed from the top model by a single 
parameter with ΔAICc < 2.0 or whose 85% confidence intervals overlapped zero were 
considered uninformative (Arnold 2010). 
Results 
Mean overall lek attendance was 11.7 birds (average of 9.5 males and 2.2 females) during the 
study period. Lek attendance declined at all but one lek in 2018, with overall attendance at 
individual leks declining 33-57% compared to previous years, with the most marked declines 
occurring in male attendance. Female attendance occurred significantly later than in previous 
years, with the first female observed on 10 April, which was about 2 and 3 weeks later than in 
2017 and 2016, respectively. Female attendance also peaked later in the year, with the majority 
visiting between 24 and 27 April.  
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We captured a total of 757 sharp-tailed grouse at leks during 2016–18, including 431 individuals 
(211 females, 220 males; Table 2). We fitted 174 females (102 yearlings, 72 adults) with radio-
transmitters. 
 
Table 2. Total number of sharp-tailed grouse captured and radio-marked during the study, 2016-
2018. Easement refers to leks occurring in pastures managed with rest-rotation grazing. 
 Males Females New Radio-marked Females 
Easement 119 121 89 
Reference 101 90 85 
Total 220 211 174 

 
Fecundity.— We located 188 grouse nests in treatment pastures (147 first nests, 41 

renesting attempts) laid by 128 individual females during 2016–2018 (Fig. 1).  Nesting 
frequency (± SE) was 1.00, while the probability of renesting after first nest failure was 0.61 ± 
0.10. Hatch rate of eggs (± SE) was 91.3 ± 2.4%. Mean clutch size for all nest attempts was 10.2 
± 0.59 eggs. Mean clutch size for first nest and renests was 11.1 ± 0.57 and 9.6 ± 0.60 eggs, 
respectively.  
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Figure 1. Locations of successful (stars) and failed (squares) sharp-tailed grouse nests in 2016–
18 in relation to different grazing treatments. 
 
Overall nest survival varied by year and ranged from 0.29 ± 0.06 in 2016 to 0.48 ± 0.07 in 2018. 
Preliminary analyses suggested that visual obstruction averaged across the 6-m radius plot best 
predicted daily nest survival and that a pseudo-threshold model best represented the relationship 
between visual obstruction and nest survival, so only models with the natural log transformation 
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of average VOR were included in analyses (see Appendix C; Milligan 2019). At the nest-level, 
VOR was in the top four models, accounting for 91% of the relative support of the data. 
Percentage forb, residual grass, and new grass in combination with VOR each received some 
support (ΔAICc = 0.50 – 1.83, wi = 0.13 – 0.26) and so were examined in the final model set. At 
the home-range level, distance to road received the most support (ΔAICc = 0, wi = 0.35) and 
proportion grassland marginally improved model fit compared to the null model (ΔAICc = 1.36, 
wi = 0.18), so both variables were included in the final analysis. In the final candidate model set, 
the model that included VOR, percentage forbs and proportion grassland received the most 
support (ΔAICc = 0, wi = 0.43, Table 3). VOR was in all twelve top models, accounting for 
100% of the relative support of the data, while proportion grassland accounted for 79% of 
relative support. Confidence intervals for VOR, proportion grassland, and distance to road did 
not overlap zero, indicating significant effects (Fig. 2). Daily nest survival increased with 
proportion grassland (β = 0.16 ± 0.10), distance to road (β = 0.21 ± 0.11), and VOR up to a 
threshold of 20–30 cm, as represented by the pseudo-threshold model (β = 0.29 ± 0.11).  
 

Table 3. Support for models predicting sharp-tailed grouse nest survival in 2016-18 in the 
three analyses examining habitat-level variables, management-level analyses and the 
combined analysis. The number of parameters (K), AICc values, ΔAICc values, model 
weights (wi) and deviance are reported. VOR is visual obstruction averaged across the 6 m 
radius vegetation plot. 

Model K AICc ΔAICc AICc 
wi Deviance 

Habitat Analysis     

ln(VOR) + %Forb + Prop. Grassland 4 747.5 0 0.43 739.49 
ln(VOR) + Prop. Grassland 3 748.94 1.44 0.21 742.94 
ln(VOR) + %Residual + Prop. 
Grassland 4 750.94 3.44 0.08 742.93 

ln(VOR) + %New Grass + Prop. 
Grassland 4 750.94 3.44 0.08 742.93 

ln(VOR) + %Forb + Dist. to Road 4 751.64 4.14 0.05 743.63 
ln(VOR) + Dist. to Road 3 751.71 4.21 0.05 745.7 
ln(VOR) 2 753.59 6.09 0.02 749.59 
ln(VOR) + %New Grass + Dist. to 
Road 4 753.62 6.12 0.02 745.61 

ln(VOR) + %Residual + Dist. to Road 4 753.69 6.19 0.02 745.68 
ln(VOR) + %Forb 3 754.09 6.59 0.02 748.08 
ln(VOR) + %Residual 3 755.41 7.91 0.01 749.41 
ln(VOR) + %New Grass 3 755.42 7.92 0.01 749.42 
Dist. to Road 2 757.17 9.68 0 753.17 
Prop. Grassland 2 758.53 11.03 0 754.53 
Null 1 758.94 11.44 0 756.94 
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Management Analysis    
Stocking Density 2 755.05 0 0.24 751.05 
Stocking Rate (cur. yr.) + Year + 
Stocking Density 5 755.1 0.05 0.23 745.08 

Stocking Rate (prv. yr.) + Year + 
Stocking Density 5 755.56 0.51 0.19 745.54 

Grazing System + Year 5 757.17 2.12 0.08 747.15 
Stocking Rate (cur. yr.) + Year 4 757.2 2.15 0.08 749.19 
Stocking Rate (prv. yr.) + Year 4 757.3 2.25 0.08 749.29 
Null 1 758.94 3.89 0.03 756.94 
Grazing System 3 760.18 5.13 0.02 754.17 
Stocking Rate (cur. yr.) 2 760.49 5.44 0.02 756.49 
Stocking Rate (prv. yr.) 2 760.9 5.85 0.01 756.89 
Stocking Rate (cur. yr.) + Grazing 
System 4 761.85 6.8 0.01 753.84 

Stocking Rate (prv. yr.) + Grazing 
System 4 762.16 7.11 0.01 754.14 

Grazing System * Year 9 763.24 8.19 0 745.19 
Stocking Rate (cur. yr.) * Grazing 
System 6 765.83 10.78 0 753.81 

Stocking Rate (prv. yr.) * Grazing 
System 6 765.84 10.79 0 753.82 

Full Analysis     
ln(VOR) + Prop. Grassland + Stocking 
Density 4 743.56 0 0.9 735.55 

ln(VOR) + Prop. Grassland 3 748.94 5.38 0.06 742.94 
ln(VOR) + Prop. Grassland + Grazing 
System + Year 7 749.82 6.26 0.04 735.79 

Stocking Density 2 755.05 11.49 0 751.05 
Grazing System + Year 5 757.17 13.61 0 747.15 
Null 1 758.94 15.38 0 756.94 
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Figure 2. Estimated daily nest survival in relation to important habitat variables, with 85% 
confidence intervals shown in grey. Visual obstruction (VOR) was averaged across the 6 m 
vegetation plot. 
 
In the management-level analysis, stocking density while the nest was active was the best 
predictor of daily nest survival, accounting for 66% of the relative support of the data (Table 3), 
with survival increasing with stocking density (β = 0.30 ± 0.14, Fig. 3). Confidence intervals for 
stocking rate in both the current and previous year overlapped zero (stocking rate in cur. yr: -
0.17–0.06; stocking rate in prv. yr: -0.18–0.25), but there was also evidence for an effect of year 
and rest-rotation grazing, with confidence intervals that did not overlap zero. Daily nest survival 
was higher in both 2017 (β = 0.36 ± 0.25) and 2018 (β = 0.73 ± 0.28) than in 2016 and was lower 
in rest-rotation pastures compared to season-long pastures (β = -0.44 ± 0.27). Overall nest 
survival (± SE) was 0.48 ± 0.07 in season-long pastures, 0.38 ± 0.06 in summer rotation pastures, 
and 0.32 ± 0.06 in rest-rotation pastures (Fig. 4). In the full analysis, the model with the most 
support included VOR, proportion grassland and stocking density while the nest was active 
(ΔAICc = 0, wi = 0.90, Table 3), with confidence intervals for all three variables not overlapping 
zero, suggesting significant effects.  
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Figure 3. Estimated daily nest survival in relation to stocking density while the nest was active, 
with 85% confidence intervals shown in grey. 
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Figure 4. Estimated overall nest survival (± 85% confidence intervals) for sharp-tailed grouse in 
each of the three grazing treatments (A) and in each of the three treatments within the rest-
rotation system in 2016–18 (B). 
 
For nests within the rest-rotation system (n=57), there was no evidence for an effect of the timing 
of grazing (grazed during the growing season, grazed post-growing season, or rested entire year) 
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on nest survival (Table 4). Estimates of overall nest survival in the three treatments overlapped 
entirely (Fig. 4). 

Table 4. Support for candidate models predicting sharp-tailed grouse nest survival in 2016–18 
within the rest-rotation system. Treatment represents whether the pasture was grazed during 
the growing season, post-growing season, or rested. The number of parameters (K), AICc 
values, ΔAICc, model weights (wi) and deviance are reported.  

Model K AICc ΔAICc AICc wi Deviance 
Null 1 251.86 0 0.61 249.85 
Stocking Rate 2 253.72 1.86 0.24 249.7 
Treatment 3 255.42 3.57 0.1 249.4 
Treatment + Stocking Rate 4 257.43 5.58 0.04 249.39 
Treatment x Stocking Rate 6 261.46 9.61 0.01 249.39 

 
We monitored 95 broods to estimate survival and document habitat use (Table 5). Twenty-two 
broods spent the majority of the time (>60% of brood locations) in rest-rotation pastures, 30 
spent the majority of time in summer rotation pastures, 29 spent the majority of time in season-
long pastures, and 14 split time between multiple grazing systems. Brood success, calculated as 
the proportion of broods fledging ≥1 chick to 14-d of age, was 0.59 ± 0.10, 0.80 ± 0.07, 0.66 ± 
0.09, and 0.43 ± 0.13 for broods located on the rest-rotation, summer rotation, season-long and 
multiple systems, respectively. Of broods that survived to fledging, the proportion of chicks that 
survived was 0.55 ± 0.08, 0.54 ± 0.06, 0.59 ± 0.07, and 0.32 ± 0.09 for broods located on the 
rest-rotation, summer rotation, season-long and multiple systems, respectively.  
 
Table 5. Sharp-tailed grouse brood survival (± SE) to fledging at 14-d post hatch for broods 
that spent the majority of time in pastures managed with each grazing system in 2016-2018. 
Brood success is the proportion of broods that successfully fledged ≥1 chick. Fledging rate is 
the proportion of chicks within broods that survived to fledging at 14 days. 
  Number of Broods Brood Success  Fledging Rate 
Rest-
rotation 22 0.59 ± 0.10 0.55 ± 0.08 

Summer 
rotation 30 0.80 ± 0.07 0.54 ± 0.06 

Season-
long 29 0.66 ± 0.09 0.59± 0.07 

Multiple 
systems 14 0.43 ± 0.13 0.32 ± 0.09 

Total 95 0.65 ± 0.05 0.54 ± 0.4 
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We determined that 28 females were killed by predators: 15 and 8 by mammalian and avian 
predators, respectively, and 5 by an unknown predator. An additional 2 females were hunter 
mortalities. One female was right censored from the study when the transmitters was found with 
no sign of death. An additional 4 females left the study area within 2 weeks of captured and were 
right censored after they could not be relocated for more than 2 months. Two females moved 
onto land to which we do not have access and so were monitored solely for survival.  
Eight demographic parameters were estimated using field data (Table 6). Estimated fecundity, 
the number of female fledglings produced per female per year, was 1.14 (95% CI = 0.82 – 1.53) 
female fledglings produced per female.  
 

Table 6. Estimated demographic rates (± SE) for female 
sharp-tailed grouse during the 2016–18 breeding seasons. 
Demographic Rate Estimate ± SE 
Nesting rate (NEST) 1 
Clutch size - first nest (CS1) 11.06 ± 0.57 
Clutch size - renests (CS2) 9.57 ± 0.60 
Nest survival (NSURV) 0.40 ± 0.04 
Renesting rate (RENEST) 0.61 ± 0.10 
Chicks per egg laid (CPE) 0.91 ± 0.02 
Brood survival (BSURV) 0.69 ± 0.05 
Fledglings per chick hatched (FPC) 0.62 ± 0.06 

 
 

Survival.— We evaluated survival for 153 female sharp-tailed grouse, some of which 
were monitored in multiple years, resulting in 180 bird-years (2016: n = 55, 2017: n = 64, 2018: 
n = 61). Of the 180 bird-years, 66 represented females primarily using the rest-rotation system, 
60 using the summer rotation system, 46 using the season-long system, and 8 splitting time 
among multiple grazing systems. Overall, 86% of mortality events were due to predation, with 
the remaining mortality events due to hunter harvest (8%) or unknown causes (6%).  
The assumption of proportional hazards for breeding season survival was not met for either year 
or grazing system, so models that included those variables also incorporated an interaction with 
time. Overall survival (± SE) during the 5-month breeding season for female sharp-tailed grouse 
across all years and grazing systems was 0.65 ± 0.04, which corresponds to a monthly survival 
rate of 0.91 ± 0.005. Despite significant annual variation in precipitation, breeding season 
survival did not differ significantly among the 3 years of study (baseline: 2016; Cox proportional 
HR for 2017 = 0.72, 95% CI = 0.07–7.02, Z = -0.29, P = 0.78; Cox proportional hazards HR for 
2018 = 5.7, 95% CI = 0.52–63.74, Z = 1.42, P = 0.16). There was also no difference in breeding 
season survival between female age classes (baseline: second-year; Cox proportional hazards HR 
= 1.19, 95% CI = 0.72–1.96, Z = 0.69, P = 0.49), or among grazing systems (baseline: season-
long; Cox proportional hazards HR for summer-rotation = 1.13, 95% CI = 0.15–8.82, Z = 0.12, P 
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= 0.90; Cox proportional hazards HR for rest-rotation = 1.49, 95% CI = 0.17–13.29, Z = 0.36, P 
= 0.73). Although there was weak evidence for an effect of age and year on survival (Table 7), 
confidence intervals for both age groups (second-year: 0.524-0.735, after second-year: 0.558-
0.757) and all 3 years (2016: 0.540-0.793, 2017: 0.540-0.778, 2018: 0.545-0.785) entirely 
overlapped. Breeding season survival was similar across grazing systems (Fig. 5).  
 
Table 7. Model selection results for Cox proportional hazards models evaluating both breeding 

season and non-breeding season survival of female sharp-tailed grouse during 2016–2018. The 

number of parameters (K), AICc values, ΔAICc values, model weights (wi) and log-likelihoods 

are reported. The % rest-rotation and % summer rotation variables represent the percent of a 

female’s 50% kernel home range composed of each grazing system. 

Model K AICc ΔAICc AICc wi Cum. wi LL 

Breeding season       

Null 1 997.04 0.00 0.48 0.48 -498.52 

Year 5 998.99 1.95 0.18 0.66 -494.32 

Female age 1 999.03 1.99 0.18 0.83 -498.50 

% Summer rotation 3 1001.35 4.31 0.06 0.89 -497.60 

% Summer rotation + Year 7 1001.57 4.54 0.05 0.94 -493.45 

% Rest-rotation 3 1002.39 5.35 0.03 0.97 -498.12 

% Rest-rotation + Year 7 1002.58 5.55 0.03 1.00 -493.95 

Non-breeding season       

Year 2 383.89 0.00 0.90 0.90 -189.89 

Null 1 388.94 5.05 0.07 0.97 -194.47 

Female age 1 390.97 7.08 0.03 1.00 -194.47 
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Figure 5. Kaplan-Meier plot of cumulative weekly survival during the breeding season of radio-
marked female sharp-tailed grouse associated with 3 grazing systems in eastern Montana and 
western North Dakota. Confidence intervals omitted for clarity. 
 
In contrast, non-breeding season survival differed among the 3 study years (Table 7; baseline: 
2016; Cox proportional HR for 2017 = 2.93, 95% CI = 1.30–6.58, Z = 2.59, P = 0.009; Cox 
proportional hazards HR for 2018 = 1.38, 95% CI = 0.52–3.67, Z = 0.65, P = 0.52), with non-
breeding survival in 2017 significantly lower than in either 2016 or 2018. Overall survival during 
the 7-month non-breeding season was 0.78 ± 0.07 in 2016, 0.43 ± 0.08 in 2017, and 0.71 ± 0.08 
in 2018, with monthly survival rates of 0.97 ± 0.007, 0.89 ± 0.005, and 0.95 ± 0.008 in 2016, 
2017, and 2018, respectively. Annual survival for the population was 0.50 ± 0.05 in 2016, 0.28 ± 
0.04 in 2017, and 0.46 ± 0.05 in 2018.  
We calculated hazard functions for females that used the rest-rotation, summer rotation, and 
season-long systems to evaluate potential differences in seasonal patterns of mortality risk 
among the different grazing systems. Mortality risk peaked in early May during the nesting 
period in all grazing systems, but seasonal patterns differed across grazing systems (Fig. 6), 
although error estimates were large so differences should be treated with caution. The increase in 
mortality risk during the nesting period was greatest in the rest-rotation system, with a 61–82% 
higher risk of mortality in the rest-rotation compared to season-long and summer rotation 
systems, respectively (Fig. 6). However, there was an additional peak in mortality in both 
season-long and summer rotation systems in late summer that did not occur in the rest-rotation 
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system, with the risk of mortality 3–4 times higher in the season-long and summer rotation 
systems, respectively, compared to the rest-rotation system (Fig. 6). The difference in peaks of 
mortality risk among systems translated to no effect of grazing system on cumulative survival 
calculated for the entire breeding season (Fig. 5).  

 
Figure 6. Weekly hazard functions during the breeding season for female sharp-tailed grouse 
associated with 3 grazing systems in eastern Montana and western North Dakota. Confidence 
intervals omitted for clarity. The approximate timing of lekking, nesting and brood-rearing 
activity is shown at the bottom. 
 
To evaluate the spatial covariates influencing mortality risk during the breeding season using 
Andersen-Gill models, we pooled females from all years and age-classes, which included data 
from 164 females across 192 bird-years, encompassing 6,783 locations, and included locations 
from individuals that were not monitored for the entire breeding season and so were not used in 
the previous analyses. The assumption of proportional hazards was met for a global model 
including all covariates. Preliminary analyses suggested that the edge density within 75 m and 
the proportion cropland within 1,300 m best predicted mortality risk (Milligan 2019). Of the 
single-variable preliminary models, edge density within 75 m, the proportion cropland within 
1,300 m, and whether a female had an active brood all improved model performance compared 
to the null model and so were included in the full candidate model set with grazing management 
variables. There was no evidence for an effect of anthropogenic disturbance, including either oil 
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pads or roads. In the full model set, the top model contained the effect of cropland within 1,300 
m, which accounted for 49% of the relative support of the data across all models (Table 8). The 
risk score increased with the amount of cropland within 1,300 m of a bird’s location (β = 0.02 ± 
0.02; Fig. 7). However, there was considerable model uncertainty and the model containing the 
effect of cropland represented only a modest improvement over the null model (Table 8). Effects 
relative to livestock grazing management were not supported (Table 8). 
 

 
Figure 7. Risk score (± 85% confidence intervals) from an Andersen-Gill formulation of the Cox 
proportional hazards model estimating the risk of mortality for female sharp-tailed grouse 
relative to the percent agriculture within 1,300 m in eastern Montana and western North Dakota. 
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Table 8. Model selection results for Andersen-Gill models of mortality risk in relation to 

landscape characteristics related to rangeland management and anthropogenic disturbance for 

female sharp-tailed grouse in eastern Monta.na and western North Dakota. The number of 

parameters (K), AICc values, ΔAICc values, model weights (wi) and log-likelihoods are 

reported. Edge density (ED) is defined as the total landcover edge length / polygon area. 

Model 
K AICc ΔAICc AICc wi 

Cum. 

wi 
LL 

Cropland 1 409.35 0.00 0.20 0.20 -203.68 

Null 1 410.51 1.15 0.11 0.31 -205.25 

Cropland + ED 2 410.62 1.27 0.11 0.42 -203.31 

Stocking rate (prv. yr) + 

Cropland 
2 410.65 1.30 0.10 0.52 -203.33 

ED 1 410.97 1.62 0.09 0.61 -204.49 

Stocking rate (cur. yr) + 

Cropland 
2 411.33 1.98 0.07 0.68 -203.66 

Stocking rate (prv. yr) 1 412.05 2.70 0.05 0.73 -205.03 

Brood-rearing 1 412.10 2.75 0.05 0.78 -205.05 

Stocking rate (prv. yr) + ED 2 412.36 3.01 0.04 0.83 -204.18 

Stocking rate (cur. yr) 1 412.46 3.11 0.04 0.87 -205.23 

Stocking rate (cur. yr) + ED 2 412.96 3.61 0.03 0.90 -204.48 

Stocking rate (prv. yr) + Brood-

rearing 
2 413.62 4.27 0.02 0.93 -204.81 
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Stocking rate (cur. yr) + Stocking 

rate (prv. yr) 
2 413.81 4.46 0.02 0.95 -204.90 

Stocking rate (cur. yr) + Brood-

rearing 
2 414.05 4.70 0.02 0.97 -205.03 

Stocking rate (prv. yr) x Brood-

rearing 
3 415.21 5.86 0.01 0.98 -204.60 

Stocking rate (cur. yr) x Brood-

rearing 
3 415.94 6.58 0.01 0.99 -204.97 

Grazing system + Cropland 5 417.14 7.79 0.00 0.99 -203.56 

Grazing system 4 417.66 8.31 0.00 0.99 -204.83 

Grazing system + ED 5 418.21 8.86 0.00 0.99 -204.10 

Grazing system + Stocking rate 

(prv. yr) 
5 418.91 9.55 0.00 1.00 -204.45 

Grazing system + Brood-rearing 5 419.27 9.92 0.00 1.00 -204.63 

Grazing system + Stocking rate 

(cur. yr) 
5 419.59 10.24 0.00 1.00 -204.79 

Grazing system + Stocking rate 

(prv. yr) + Stocking rate (cur. yr) 
6 420.41 11.06 0.00 1.00 -204.20 

Grazing system x Brood-rearing 9 425.81 16.46 0.00 1.00 -203.89 
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Objective 1a: Evaluate cumulative effects of livestock grazing management systems on 
sharp-tailed grouse populations using integrated population models (IPMs) 
Methods: 

Integrated Population Models—The Bayesian framework is particularly useful in the 
field of ecology for combining multiple, sometimes dissimilar sources of data and estimating 
parameters of complex data sets (Kéry and Shaub 2012). In addition, Bayesian methods allow 
explicit modeling of both the ecological (or state) process and the observation process, which is 
critical when models are used to inform management decisions. Thus, we used a Bayesian 
hierarchical framework to develop an integrated population model (IPM) that combines multiple 
independent sources of population data including spring lek counts and a female-based stochastic 
population model with two stage classes (yearlings and adults).  Our methodology is similar to 
IPMs developed previously for greater sage-grouse (Coates et al. 2018) and informed by 
procedures described in Kéry and Shaub (2012) and Halstead et al. (2012). An advantage of 
IPMs over population models developed only with demographic data is the estimation of latent 
population parameters that were not directly measured; estimation of derived parameters provide 
a more thorough understanding of population dynamics between and within stage classes, years, 
and sites (Schaub and Abadi 2011). We were chiefly interested in evaluating whether grazing 
system (summer rotation, rest-rotation, or season-long) differentially influenced vital rates and 
population growth rates of sharp-tailed grouse in western MT and eastern North Dakota. 

Population Count Data—According to Abadi and Schaub (2011), “IPMs represent the 
single, unified analysis of population count data and demographic data.” The foundation of IPMs 
is population count data. For 12 surveyed leks from 2016 through 2018, we compiled three 
repeated lek counts during a short 5-day window each year (to address the assumption of 
population closure) along with counts of the maximum number of males per lek. Maximum and 
repeated counts were entered into a single season N-mixture model to adjust for systematic 
downward bias in the observation data (Royle 2004). The N-mixture model was specified as: 

State Process: 

Nl,y ~ Poisson(λ𝑦𝑦) 

Log(λ𝑦𝑦) = α0 

Observation Process: 

𝐶𝐶𝑙𝑙,,𝑟𝑟|𝑁𝑁𝑙𝑙,𝑦𝑦 ~ Binomial(𝑁𝑁𝑙𝑙,𝑦𝑦, 𝑃𝑃𝑦𝑦) 

Logit(Py) = β0,𝑦𝑦, 
where subscripts l, y, and r denote the specified lek, year, and repeated counts respectively. The 
state process equations model the latent unobservable number of males associated with each lek 
(local abundance), and the observation process equations model the variation among repeated 
counts within a year at each lek and estimate the probability of detecting a grouse. Although 
most birds counted on the leks are males, we assume a 1:1 sex-ratio and therefore used the male 
counts as a proxy for the number of females in the population, which are much more difficult to 
count.  
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Survival and reproductive data comprise the second major component of our IPM: the 
demographic data and sub-component models. The life-histories of grouse are often represented 
by a two stage-class conceptual diagram where the nodes represent stage-classes (yearlings = 
females 10 – 20 months of age, adults = females > 20 months of age) and arrows represent major 
population vital rates (Hagen et al. 2009, McNew et al. 2012, Coates et al. 2014).  This 
conceptual model is then transformed into a 2-stage stochastic Lefkovitch population matrix for 
subsequent analyses (Caswell 2001).  

Survival—We modeled annual survival for both stage classes of female STGR monitored 
via radio-telemetry, survival of first and second nests, and survival of chicks from hatch until 35 
days old as continuous processes observed at discrete intervals. For each discrete monthly 
interval, adult birds were classified as dead, alive, or censored. We constructed histories of nests 
and chicks using days as time intervals (Halstead et al. 2012). Using a constant hazard model, we 
assumed the probability of mortality was equal across the length of the study and assumed that 
risk of mortality was independent among individuals. Left censoring occurred prior to 
individuals entering the study (time of capture and initiation of laying for nests) allowing for 
staggered entry common to radio-telemetry and reproductive ecology studies. Right censoring 
occurred after mortality, loss of radio, and for birds still alive at the end of the study period (after 
year 2018), meaning that all individuals had a recorded mortality event or were eventually right-
censored. Following modeling procedures described in Halstead et al. (2012), the survival 
function for the constant hazard model was estimated as: 

Sijl = e-CHijl, where CHijl = ∑ 𝑈𝑈𝑈𝑈𝑇𝑇
𝑗𝑗=1 1:j,il and 

UHijl = exp(γ0 + βage,ij*xage,ij + κij + βgrz1*xgrz1 + βgrz2*xgrz2) 
Subscript i references individual grouse, nests, or chicks and subscripts j and l reference units of 
time and survival year respectively. T is the last time interval in the monitoring period. Symbol 
γ0 is the mean baseline hazard and models for adult survival, first and second nest survival, and 
chick survival included random effects for individual hen age (βage,ij, where the indicator was 
equal to one for yearlings) and year (κij) to account for individual and annual variation. 
Parameters βgrz1 and βgrz2 are the magnitude of the expected change in the ln(hazard ratio) 
depending on grazing system type, where season-long is the reference category and indicator 
variables specify rest-rotation (xgrz1 equal to one) and summer rotation (xgrz2 equal to one) 
systems. Hazard ratios measure an effect on an outcome of interest over time, in this case the 
effect of grazing system on grouse survival. The hazard represents the instantaneous event rate. 
The hazard ratio is interpreted as the relative likelihood a particular group will experience the 
event of interest compared to the reference group. Thus, if the hazard ratio is less than one, the 
treatment group is less likely than the reference group to experience the event of interest (i.e., a 
hazard ratio of 0.5 would mean that a female grouse in that grazing system is half as likely to 
experience mortality at a particular point in time compared to a grouse in the reference grazing 
system, season-long). A hazard ratio equal to one implies no difference in treatment from the 
reference group, and therefore, if the 95% credible interval includes one, we do not have 
evidence of a difference in probability of survival between the treatment group and the reference 
group.  
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To classify grazing system for models of adult survival, we simply used the classification with 
the highest recorded frequency of locations during the time period of interest (e.g., if a hen was 
located in season-long pastures ten times and rest-rotation five times, the grazing system was 
classified as season-long for that hen in the adult survival model). For first and second nests, we 
simply used the grazing system in which each nest was located. We used uninformative priors 
for all parameters. 
 Fecundity—Fecundity was defined by several sub-models, each of which specifically 
estimated important reproductive vital rates for STGR. Parameters estimated by individual 
stochastic sub-models included nest propensity (np; first nest = np1 and second nest = np2), nest 
survival (ns; described above), clutch size (cl), egg hatchability (h), chick survival (cs; described 
above), and juvenile survival (js). We did not monitor juvenile grouse after 35 days of age. One 
of the advantages of IPMs is the estimation of vital rates for which no data were collected (Kéry 
and Schaub 2012). Therefore, we used an informative prior in our sub-model of juvenile survival 
(js) based on published rates in the literature for greater sage-grouse and prairie-chickens 
(Pitman et al. 2006, McNew et al. 2012). Information on juvenile survival rates specifically for 
STGR is lacking. Therefore, we used a mean value of 0.40 for survival of juvenile birds from 
independence at 35 days of age to recruitment the following Spring (March 1). We also used an 
informative prior for first nest propensity for each stage class, using more conservative values 
than rates reported in the literature (beta(97, 5) for adults and beta(90,12) for yearlings) due to 
concerns about the potential for missing first nests that failed early during the laying period 
(Taylor et al. 2012, Coates et al. 2014). We assumed nest propensity was constant among years. 
Thus, fecundity was estimated as: 

Fja = ((np1a * cl1ja * ns1a * ha * csja * jsa) + 
((1-ns1ja) * np2ja * cl2ja * ns2ja * ha * csja * jsa))/2. 

Subscripts reference year (j) and stage class (a). We divided the value of F by two because our 
model is female-based and we assumed an equal sex ratio, an assumption supported by the 
sample of captured adult birds (211 females and 220 males). We used an additive random effect 
structure to account for nesting female stage class and year. 
Second nest propensity (np) was modeled as: 

ynp2,j ~Binomial(pnp2,j, nnp2,j) 

logit(pnp2,j) = βage,j * xage,j + γj 

γj ~ Normal(0, σγ2) 
where ynp2,j represents the number of renests, nnp2,j is the number of unsuccessful first nests in 
each year (j) and logit(pnp2,j) is a function of female stage class (βage,j) and random year effects 
(γj) drawn from a normal distribution with a mean of zero and a variance of σγ2.  

The expected mean clutch size (𝜇𝜇𝑐𝑐l) at clutch c in year j is a linear function of random year 
effects (𝛾𝛾𝑗𝑗) and the change in the expected count of magnitude 𝛽𝛽age, nesting female stage class. 
Clutch sizes of firsts nests and second nests were modeled as being drawn from a Poisson 
distribution and estimated as:  
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𝑦𝑦𝑐𝑐l,𝑗𝑗 ~ Poisson(𝜇𝜇𝑐𝑐l,𝑐𝑐𝑐𝑐) 
 

Log(𝜇𝜇𝑐𝑐l,𝑐𝑐𝑐𝑐) = 𝛽𝛽age∗𝑥𝑥age,𝑐𝑐𝑐𝑐 + 𝛾𝛾𝑗𝑗  
 

𝛾𝛾𝑗𝑗 ~ Normal(0, 𝜎𝜎𝛾𝛾2) 
Egg hatchability (h) was compiled from nests that were successful (one or more eggs hatched) 
and estimated as arising from a binomial distribution following the same equation for second 
nest propensity, where the initial clutch size represented the number of trials with a binary 
outcome (hatch or not hatch) and the number of hatched eggs represented the number of 
successes. We included the same random effects for year and female stage class. 
Chick survival (cs) was modeled based on flush counts of chicks at approximately 35 days post-
hatch arising from a binomial distribution (logit-link function). The initial brood size represented 
the number of trials and chicks that survived to day 35 were the successes. The estimated model 
included random effects for year (γj) and female stage class (βage) as well as parameters with 
indicators for grazing system (as described above; βgrz1 and βgrz2). We assumed a constant hazard 
function and the model followed the form used for adult and nest survival and was estimated as:  

ycs,j ~ Binomial(pcs,j, ncs,j) 

logit(pcs,j,35) = βage,j * xage,j + βgrz1*xgrz1 + βgrz2*xgrz2+ γj 

γj ~ Normal(0, σγ
2) 

Joint Likelihood—After defining the sub-models, we specified the joint likelihood which 
is the product of the component likelihoods of the population count data (from the N-mixture 
model), stage class survival data, and fecundity data. In concert, the subcomponents of the IPM 
were used to derive posterior distributions for STGR vital rates, and enabled us to estimate the 
total female population across the study area in each year. The mean expected number of recruits 
into the yearling stage class (µ1yi) was estimated as: 

µ1yi = Ns(1,y-1,i) * R(1,y-1) * S8(1,y-1) + 
Ns(2,y-1,i) * R(2,y-1) * S8(2,y-1), 

where subscripts a, y, and i correspond to stage class (a = 1 for yearlings and 2 for adults), year, 
and lek site respectively. Ns represents the initial number of each age class in each year at each 
lek site i. Symbols R and S8 represent recruitment and eight-month survival. The number of 
yearling recruits (N1yi) is: 

N1yi ~ Poisson(µ1yi) 
We represent the number of yearlings surviving into adulthood  (Nnew(2yi)) as being drawn from a 
Binomial distribution given the annual survival of yearlings from the previous year and the 
number yearlings from that lek the year before.  

Nnew(2yi) ~ Binomial(S12(1,y-1), N(1,y-1,i)) 
Similarly, the number of surviving adults from the prior year (Nold(2yi)) is estimated as being 
drawn from a Binomial distribution with a mean of the annual adult survival from the year before 
and the number of adults from the lek the prior year, represented as: 
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Nold(2yi) ~ Binomial(S12(2,y-1), N(2,y-1,i)) 
Given the information in the constructed Lefkovitch matrix and abundance estimates for both 
stage classes, we estimated abundance at each lek in each year, where total adults (N2yi) is the 
sum of new adults (Nnew(2yi)) and returning adults (Nold(2yi)) and total abundance (Ntot) is the sum 
of total adults (N2yi) and yearlings (N1yi):  

N(2yi) = Nnew(2yi) + Nold(2yi) 
Ntot = N2yi  + N1yi 

Population totals across the study area are estimated by summing lek site totals for all leks in 
each year. From the derived abundance estimates, we calculated the finite rate of population 
change (𝜆𝜆; Caswell 200, Gotelli and Ellison 2004) by dividing total abundance in year j+1 by the 
total abundance in the previous year j. Thus, 

𝜆𝜆𝑗𝑗  =  
𝑁𝑁𝑗𝑗+1
𝑁𝑁𝑗𝑗

 

where subscript j represents year. Posterior distributions of estimated parameters were summarized 
by mean and 95% credible intervals (CrI). 
We used the packages rjags (Plummer 2019) in Program R (version 3.6.2; R Core Team 2019) 
with Markov chain Monte Carlo methods to obtain posterior samples of the parameters of 
interest, running three independent chains of 110,000 iterations, thinned by a factor of 5, after a 
burn-in of 10,000. Mixing was sufficient and convergence was achieved as confirmed by 
examining trace plots and R-hat values (all less than 1.01; Gelman et al. 2013) after estimation. 
Results:  
During the study period, we located 188 grouse nests laid by 128 individual females, of which 
147 were first nests and 41 renesting attempts. Individual female hen, year, and female stage 
class did not significantly impact nest survival. We evaluated chick survival for 93 broods (2016; 
n = 25, 2017; n = 36, 2018; n = 32). To estimate adult survival, our data set consisted of 
information for 153 female sharp-tailed grouse, some of which were monitored in multiple years 
resulting in 172 bird years (2016; n = 55, 2017; n = 64, 2018; n = 61). Of the total bird years, 66 
were females primarily using rest-rotation, 46 primarily used season-long, and 60 used summer 
rotation. 
Estimated vital rates (Tables 9-11) from the IPM generally agree with those estimated from our 
previous independent analyses (Tables 1-5; Milligan 2019, Milligan et al. 2020a-c). For example, 
Milligan et al. (2020b) reported that the five-month breeding season survival across all years and 
grazing systems was 0.65 (SE = 0.04). Our five-month breeding season estimate for each year 
and stage class from the IPM ranged from 0.67 to 0.83. Annual survival rates for STGR in the 
literature range from 0.17 to 0.43 but have been reported as high as 0.71 (Robel et al. 1972, 
Connelly et al. 1998). Our annual survival estimates fall within this range, averaging 0.52 across 
stage classes and years, with the lowest estimated value being 0.38 (95% CrI: 0.23-0.54) for 
yearlings in 2017. Milligan et al. (2020b) reported annual survival rates and standard errors of 
0.50 ± 0.05 in 2016, 0.28 ± 0.04 in 2017, and 0.46 ± 0.05 in 2018.    
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Table 9. Estimates and 95% credible intervals for fecundity parameters in 2016 from a female-
based integrated population model on Sharp-tailed grouse in western Montana. 

   Yearling   Adult 

Parameter   Estimate 95% CrI   Estimate 95% CrI 

clutch size, first nest  12.18 (11.364, 13.027)  12.57 (11.734, 13.44) 

clutch size, second nest  9.33 (7.826, 10.871)  8.62 (7.378, 9.907) 

hatchability  0.92 (0.892, 0.947)  0.91 (0.881, 0.941) 

nest propensity, second nest  0.56 (0.359, 0.757)  0.60 (0.41, 0.78) 

recruitment  0.27 (0.163, 0.4)  0.23 (0.137, 0.352) 

annual survival  0.45 (0.614, 0.807)  0.62 (0.501, 0.724) 

breeding season survival  0.72 (0.716, 0.807)  0.82 (0.75, 0.874) 

chick survival  0.21 (0.156, 0.269)  0.18 (0.132, 0.238) 

nest survival, first nest  0.45 (0.223, 0.668)  0.36 (0.138, 0.594) 

nest survival, second nest   0.75 (0.258, 0.992)   0.83 (0.438, 0.996) 
 
 
 
 
Table 10. Estimates and 95% credible intervals for fecundity parameters in 2017 from a female-
based integrated population model on Sharp-tailed grouse in western Montana. 

            Yearling           Adult 

Parameter   Estimate 95% CrI   Estimate 95% CrI 

clutch size, first nest  11.80 (10.923, 12.716)  12.18 (11.305, 13.072) 

clutch size, second nest  10.14 (8.587, 11.978)  9.38 (7.831, 11.346) 

hatchability  0.91 (0.874, 0.939)  0.90 (0.87, 0.928) 

nest propensity, second nest  0.48 (0.28, 0.679)  0.52 (0.337, 0.689) 

recruitment  0.29 (0.183, 0.408)  0.25 (0.16, 0.356) 
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annual survival  0.38 (0.229, 0.539)  0.56 (0.434, 0.669) 

breeding season survival  0.67 (0.541, 0.773)  0.78 (0.706, 0.845) 

chick survival  0.22 (0.174, 0.267)  0.19 (0.148, 0.235) 

nest survival, first nest  0.52 (0.293, 0.73)  0.43 (0.231, 0.643) 

nest survival, second nest   0.75 (0.241, 0.991)   0.82 (0.437, 0.996) 
 
  



36 
 
 
Table 11. Estimates and 95% credible intervals for fecundity parameters in 2018 from a female-
based integrated population model on Sharp-tailed grouse in western Montana. 

           Yearling            Adult 
Parameter   Estimate 95% CrI   Estimate 95% CrI 

clutch size, first nest  11.35 (10.333, 12.395)  11.71 (10.72, 12.721) 

clutch size, second nest  9.89 (8.146, 11.919)  9.14 (7.66, 10.857) 

hatchability  0.93 (0.899, 0.952)  0.92 (0.891, 0.946) 

nest propensity, second nest  0.50 (0.272, 0.711)  0.53 (0.318, 0.731) 

recruitment  0.39 (0.249, 0.545)  0.35 (0.22, 0.498) 

annual survival  0.48 (0.313, 0.654)  0.64 (0.517, 0.758) 

breeding season survival  0.74 (0.616, 0.838)  0.83 (0.759, 0.891) 

chick survival  0.27 (0.21, 0.34)  0.24 (0.18, 0.303) 

nest survival, first nest  0.64 (0.415, 0.821)  0.56 (0.342, 0.763) 

nest survival, second nest   0.67 (0.034, 0.992)   0.76 (0.164, 0.996) 

 
 
Consistent with our previous independent evaluations (Milligan et al. 2020a-c), estimates and 
credible intervals for the hazard ratios for the effect of the three grazing systems (summer 
rotation, rest-rotation, and season-long) indicate that grazing system did not impact key vital 
rates of our STGR population (Table 12). However, we are currently evaluating whether more 
explicitly linking the grazing system with discrete observations over time rather than as a 
majority classification, examining impacts on more fecundity parameters, and evaluating 
whether grazing system differentially affected the two stage classes of females. Inclusion of the 
effect of grazing system on more parameters and the temporal variation in use may allow us to 
detect a subtle but chronic impact of grazing system on vital rates and therefore, population 
dynamics. 
Collectively, estimated rates of finite population change indicated a declining population 
between 2016–2018, with the largest decrease between 2017 and 2018 (λ = 0.69, 95% CrI: 0.54–
0.84; Table 13); the last two years of the study corresponding to significant drought. Our desire 
is to estimate cumulative effects of grazing system on λ. However, STGR were not restricted to a 
single grazing system during an annual cycle (i.e., most radio-marked females were located in 
multiple grazing systems throughout the year), making assignments of a complete suite of vital 
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rates, particularly annual survival, from a single female to a particular grazing system 
impossible. 
 
Table 12. Hazard ratios for effects of grazing system on key vital rates of Sharp-tailed grouse 
estimated with a Bayesian hierarchical integrated population model. Season-long grazing is the 
reference category. Field data was collected in western Montana from 2016-2018. Hazard ratios 
and 95% credible intervals suggest that on average grazing system does not differentially or 
significantly impact nest survival, chick survival, or annual survival of adult, female grouse. 

 grazing system 
 rest-rotation  summer rotation 

parameter est 95% CI  est 95% CI 

ln(hazard ratio), second nest survival 0.02 (-0.324, 0.367)  0.30 (0.003, 0.597) 

ln(hazard ratio), first nest survival 0.14 (-0.503, 0.802)  0.36 (-0.285, 1.026) 

ln(hazard ratio), chick survival 0.90 (-1.482, 3.832)  1.51 (-0.728, 4.653) 

ln(hazard ratio), adult survival 0.32 (-0.101, 0.744)  0.64 (0.211, 1.064) 

hazard ratio, second nest survival 1.02 (0.723, 1.443)  1.35 (1.003, 1.816) 

hazard ratio, first nest survival 1.15 (0.604, 2.229)  1.43 (0.752, 2.789) 

hazard ratio, chick survival 2.45 (0.227, 46.154)  4.51 (0.482, 104.899) 

hazard ratio, adult survival 1.38 (0.903, 2.104)  1.89 (1.234, 2.897) 
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Table 13. Posterior mean estimates and 95% credible intervals of finite rate of population change 
(λ), female population size, intrinsic rate of growth (r) and juvenile survival (from informative  
prior) for an integrated population model on sharp-tailed grouse using field data collected  
during 2016– 2018.  

      95% CrI   
Parameter Year Estimate LL UL Rhat 

juvenile survival  0.402 0.343 0.464 1.000 

λ 2016 to 2017 0.741 0.615 0.874 1.001 

λ 2017 to 2018 0.686 0.535 0.837 1.001 

pop. size 2016 264 226 299 1.001 

pop. size 2017 195 156 231 1.001 

pop. size 2018 134 95 171 1.001 

r 2016 to 2017 -0.303 -0.485 -0.134 1.001 

r 2017 to 2018 -0.381 -0.624 -0.177 1.001 
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Objective 2: Investigate impacts of rest-rotation grazing on sharp-tailed grouse home 
ranges, movements and habitat selection. 
Methods 
Radio-marked females were located by triangulation or homing ≥ 3 times/week during the 
breeding season (15 March – 15 August). Coordinates for triangulated locations were calculated 
using Location of a Signal software (LOAS; Ecological Software Solutions LLC, Hegymagas, 
Hungary) and examined for spatial error. All locations with low estimation precision (> 200 m 
error ellipse) were discarded.  
We analyzed location data for the breeding season (15 March – 15 August) and defined a home 
range as the space an individual needed to forage, reproduce, and survive. Previous studies have 
found that small sample sizes can bias home range estimates (Seaman et al. 1999), so analyses 
were restricted to birds with ≥ 30 locations and ≥ 20 locations not associated with a nest site. We 
used the fixed kernel method with the default smoothing parameter to calculate home ranges as 
the 95% utilization distribution for the breeding season (April – August) using the adehabitatHR 
package in Program R. We also calculated centroids for each home range by estimating the 1% 
volume contour of each home range and using the geographic center of that contour as the 
centroid.  
We used linear models to evaluate the relationship between home range size and the effects of 
year; nest outcome; density of edge habitat within the home range; proportion grassland within 
the home range; proportion of each grazing system contained within the home range; mean 
stocking rate within the home range; and distance to nearest lek, grassland patch edge, road, and 
oil pad at the home range centroid. We calculated the proportion of grassland and edge density 
within each home range in ArcGIS and measured the distance from each centroid to the nearest 
lek, grassland patch edge, road and oil pad in Program R 3.5.1. Habitat classifications utilized the 
30-m resolution LANDFIRE data depicting landcover type (LANDFIRE 2013). A habitat patch 
edge was defined as an abrupt change between any of the three main landcover types (grassland, 
wooded draws, and cropland) and edge density was defined as the amount of patch edge relative 
to the home range size. We digitized the location of oil pads and roads in the study area and 
roads were defined as paved and dirt state and county roads and did not include ranch two-tracks. 
We collected information on grazing management for every pasture in the study area by 
interviewing landowners to determine the number and class of animals stocked and the timing of 
stocking to determine the grazing system (rest-rotation, summer rotation, season-long) and 
stocking rate (AUM ha-1) during the current and previous year. Stocking rate is a measure of the 
number of animals in a pasture during the entire grazing season. As most females used more than 
one grazing system, we calculated the proportion of each individual home range containing the 
three different grazing systems and assigned a female to the grazing system containing ≥ 60% of 
the home range. Females were considered to use multiple systems if no one system accounted for 
≥ 60% of their home range and were not included in analyses evaluating the effect of grazing 
system.  
We examined second-order habitat selection, or the selection of habitat for an individual’s home 
range within the larger study area, using the adehabitat package in Program R 3.5.1 to conduct 
compositional analysis of used versus available habitat (Johnson 1980, Aebischer et al. 1993). 
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Available habitat was defined as the home range calculated for locations of all radio-marked 
females in a given year, whereas used habitat was measured within each individual home range. 
We used compositional analysis to compare used versus available landcover types and grazing 
systems separately. Landcover classifications were based on LANDFIRE data and were grouped 
into grassland, wooded draws, cropland, and other, which was composed primarily of ruderal 
grasslands (LANDFIRE 2013).  
To evaluate third-order habitat selection, or the selection of habitat within individual home 
ranges, we used resource selection functions to compare used and available points following 
Design 3 of Manly et al. (2002). We identified nine landscape metrics a priori that could 
influence sharp-tailed grouse space use. Three of those metrics were related to rangeland 
management: grazing system and stocking rate (AUM ha-1) during either the current or previous 
year. Two landscape metrics represented anthropogenic disturbance, including both oil pads and 
roads, and we calculated the distance to each from both used and available points. Four 
additional landscape variables were related to landcover: % grassland, % wooded draws, % 
cropland, and the density of edge habitat (total landcover edge length / polygon area), which 
were based on the 30-m resolution LANDFIRE data depicting landcover type (LANDFIRE 
2013). We used FRAGSTATS 4.2 (McGarical et al. 2012) to conduct a moving window analysis 
to calculate the proportion of each landcover type and the density of edge habitat within 8 buffer 
distances (30, 75, 125, 200, 500, 750, 1000, 1300 m) to evaluate the spatial grain for each 
landcover type that best predicted grouse space use (Laforge et al. 2015). We chose grain sizes to 
reflect a continuum of scales, with 30 m representing the minimum size as imposed by our 
spatial data and 1,300 m approximating the average size of the breeding season home range of a 
female sharp-tailed grouse in our study area. A grain size of 200 m represents the average 
distance moved daily by female sharp-tailed grouse during the breeding season in our study. The 
remaining grain sizes represent intermediate distances between the minimum imposed by our 
spatial data and a grain size representing the average size of a breeding season home range.  
We conducted 1,000 simulations for each variable and each grain size of landcover variables to 
determine the number of available points required for coefficient estimates to converge 
(Northrup et al. 2013). Based on the simulations, available points were sampled at a 15:1 
available:used ratio within each individual bird’s home range to balance coefficient convergence 
and computational efficiency. For all models, we used generalized linear mixed models in a 
Bayesian framework with a logit-link and female ID as a random intercept to account for 
potential autocorrelation among sampling points (Gillies et al. 2006, Thomas et al. 2006). For the 
four landcover covariates, we first selected the grain size at which selection was the strongest for 
each, basing model selection comparing the 8 buffer distances on calculated leave-one-out 
information critierion (LOOIC) to identify a top model sensu Laforge et al. (2015). If error 
estimates overlapped for calculated LOOIC, we based model selection on calculated deviance 
information criteria (DIC) and considered > 5 DIC units to be a substantial difference in model 
fit (Thomas et al. 2006). 
After assessing collinearity for each pair of explanatory variables (r ≥ 0.6) and selecting the 
variable with the most support based on calculated LOOIC and DIC, we then evaluated support 
for all management and landscape variables in a full model using indicator variables. Regression 
coefficients for each variable were the product of binary indicator variables and both continuous 
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and categorical covariates and we used the posterior distributions of the indicator variables to 
identify the variables with high inclusion probability that were the most important predictors of 
habitat selection [64-66]. We assumed that all variables with high inclusion probability based on 
the posterior distributions of their indicator variables influenced habitat selection and variables 
with inclusion probabilities ≤ 0.25 were unimportant (Mutshinda et al. 2013). The posterior 
distributions of coefficients represented the relationship between habitat variables and the 
relative probability of selection within the defined home range. We calculated standardized 
coefficients of fixed effects to make population-level inferences about each habitat variable and 
improve model convergence. Coefficients with 95% credible intervals that did not overlap zero 
were considered important. We examined estimates of variability (σ2) for each predictor variable 
to determine the degree of variation in selection among individuals for specific habitat features 
(Indermaur et al. 2009).    
We fit models using Markov Chain Monte Carlo (MCMC) simulations with JAGS (version 
4.2.0, mcmc-jags.sourceforge.net, accessed Dec 2018) implemented via the ‘runjags’ package 
(Denwood 2006) in Program R 3.5.1 to approximate the posterior probability distribution of 
model parameters. Vague uniform or normal priors were used for all model parameters related to 
covariates and their measures of error (Kery 2010). Indicator variables were Bernoulli random 
variables and we placed a Beta(2,2) prior distribution on the inclusion probability of each 
indicator variable to represent no prior information about the importance of individual variables. 
We first identified the top spatial grain model for each landcover variable from 20,000 samples, 
thinned by a factor of 5, from 3 independent MCMC chains, after discarding 10,000 burn-in 
samples. Inference from the full model was based on a total of 50,000 samples, thinned by a 
factor of 5, from 3 independent MCMC chains, after discarding the first 100,000 burn-in 
samples. We assessed convergence and MCMC chain mixing visually and based on Gelman-
Rubin convergence statistics and considered sets of chains with no trends across trace plots and 
values < 1.1 converged (Gelman 2006). To perform posterior predictive checks, we calculated a 
Bayesian p-value as a goodness-of-fit measure that compares attributes of the observed data to 
that of data generated by the model (Gelman et al. 1996). 
Nest site selection.— We examined habitat and management variables influencing nest site 
selection in separate analyses using resource selection functions. Habitat variables were 
considered for their direct effect on nest site selection, while management variables were 
considered for potential indirect effects on vegetation structure as mediated through livestock 
grazing practices. Nests were considered used sites and, as we did not conduct searches for nests 
of unmarked grouse, random points were considered available following Design 2 of Manly et al. 
(2002), where availability is defined at the population level. For each analysis, we used 
generalized linear mixed models with the logistic link function, a binomial error structure, and 
female ID as a random effect to account for potential autocorrelation. Before fitting models, we 
examined correlations for each pair of explanatory variables (r ≥ 0.6) and if two variables were 
highly collinear, we used single factor logistic regression to determine which variable accounted 
for more of the variation in the data. All preliminary analyses are reported in the appendices. 
Models were compared using AICc and model selection was based on both minimization of 
AICc and AICc weights (wi). For the habitat-level analysis, we first evaluated underlying 
variables, variables at the nest-site scale, and variables at the home-range scale independently 
and built a final candidate model set that included variables supported at each scale. Underlying 
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variables included year, hen age, and nest attempt. Variables at the nest-site scale included VOR 
at the nest bowl and averaged within the 6 m radius plot, distance to grassland edge, and the 
percentage of shrubs, new grass, residual grass, forbs, and bare ground. Different functional 
relationships with VOR were examined, including linear, quadratic and natural log models (i.e., 
pseudo-threshold effects; Dugger et al. 2005; McNew et al. 2014). Variables considered at the 
home-range scale included the proportion of grassland habitat, density of edge habitat, grassland 
shape complexity (MSI), and distance to oil pad, road, or lek. We then selected the most 
parsimonious models at each of the different spatial scales (nest-site and home range level) and 
assessed them in the final candidate model set. In the management-level analysis, we evaluated 
all combinations of the effects of grazing system and stocking rate. We also evaluated additive 
and interaction models with year and either grazing system or stocking rate to assess whether a 
system-level effect was only apparent under certain annual conditions. Variables were 
considered significant if 85% confidence intervals did not overlap zero (Arnold 2010). Finally, 
we evaluated combinations of important variables from both the habitat- and management-level 
analyses into a final candidate model set to assess the relative importance of habitat and 
management variables. 
For the top RSF, we calculated the marginal and conditional R2 to evaluate the total variance 
explained by the model (Nakagawa and Schielzeth 2013). We validated the top RSF with a 
reserved data set of 39 randomly selected nests sites and 39 random points (20% of data; Boyce 
et al. 2002). The top model was used to calculate predicted RSF values for each nest in both the 
training and the test data sets. Raw RSF values were placed in 5 quantile bins representing an 
increasing likelihood of a point being classified as a nest site. We regressed the proportion of 
nests from the test data set in each bin against the proportion of nests from the training data set in 
each bin and evaluated good model fit based on Johnson et al. (2006). 
Results 
During the 2016–2018 breeding seasons, we collected a total of 7,178 locations and calculated 
142 home ranges for 118 individual females (40 in 2016, 53 in 2017, 49 in 2018). Home range 
size was estimated without bias relative to sampling effort (Milligan 2019). Mean breeding 
season home range size for all females was 489 ± 41 ha but varied from 58–3,717 ha (Table 14). 
Home range sizes were less variable within pastures managed with summer rotation grazing 
compared to those in other systems (Fig. 8), but grazing system did not have a significant effect 
on average size of home ranges (Table 15). Density of edge habitat within the home range was 
the best predictor of home range size (Table 15) and was negatively related to the size of 
breeding season home ranges (β = -5.26 ± 1.48; Fig. 9).  
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Table 14. Home range size (95% volume contour) for radio-marked female sharp-tailed grouse 

monitored in the 3 grazing systems during the breeding seasons of 2016–2018. Females were 

assigned to the grazing system containing ≥ 60% of their home range or were considered to 

use multiple systems if no one system accounted for ≥ 60% of their home range. 

Grazing System # Females 
Mean area (ha) ± 

SE 
Min. area (ha) 

Max area 

(ha) 

Rest-rotation 47 557 ± 94 63.81 3717.45 

Summer rotation 44 361 ± 39 86.13 1198.89 

Season-long 36 408 ± 43 57.51 1103.58 

Multiple systems 15 838 ± 179 191.43 2265.66 

Total 142 489 ± 41 57.51 3717.45 
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Table 15. Support for candidate models predicting the home range size of female sharp-tailed 

grouse during the breeding seasons of 2016–2018. The percent of a home range containing 

either the rest-rotation or summer rotation system are measured in relation to the season-long 

system. The number of parameters (K), AICc values, AICc values, model weights (wi), and log-

likelihoods are reported.  

Model K AICc ΔAICc AICc wi Cum. wi LogLik 

Edge density 3 2157.27 0.00 0.93 0.93 -1075.55 

Dist. to grassland edge 3 2165.05 7.78 0.02 0.95 -1079.44 

Nest outcome 3 2165.25 7.98 0.02 0.96 -1079.54 

Null 2 2166.80 9.53 0.01 0.97 -1081.36 

Year 3 2167.47 10.20 0.01 0.98 -1080.65 

% Rest-rotation 3 2167.71 10.43 0.01 0.98 -1080.77 

Stocking rate 3 2168.12 10.84 0.00 0.99 -1080.97 

% Summer rotation 3 2168.14 10.87 0.00 0.99 -1080.98 

Dist. to lek 3 2168.65 11.38 0.00 0.99 -1081.24 

Dist. to road 3 2168.73 11.46 0.00 0.99 -1081.28 

Dist. to oil pad 3 2168.84 11.57 0.00 1.00 -1081.33 

Prop. grassland 3 2168.88 11.61 0.00 1.00 -1081.36 
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Table 16. Simplified ranking matrix of female sharp-tailed grouse breeding season habitat 

selection based on vegetation type in 2016-2018. Matrix is based on comparing proportional 

habitat use within home ranges with the proportion of available habitat types. The ‘other’ 

habitat is composed primarily of ruderal grasslands. Habitat types with the same rank suggest 

that females did not differentiate between the two categories in habitat selection. 
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Grassland 0 + +++ +++ 1 

Wooded draws - 0 +++ +++ 1 

Other --- --- 0 +++ 3 

Agriculture --- --- --- 0 4 
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Figure 8. Female sharp-tailed grouse breeding season home range size (± SE) by grazing system.  
An individual female was assigned to a grazing system according to the system containing ≥ 
60% of the individual’s home range. 
 

 
Figure 9. Relationship (± 85% confidence intervals) between the density of edge habitat (total 
landcover edge length / polygon area) and breeding season home range size for female sharp-
tailed grouse. 
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At the second order, breeding season habitat use was ranked as follows: grassland = wooded 
draws >> other (primarily ruderal grasslands) >> cropland (Table 16), suggesting that females 
did not differentiate between grasslands and wooded draws with regards to preference but 
selected both habitat types over other habitats, including cropland. Females strongly selected for 
mixed grass prairie habitats, even though roughly 83% of the entire study area was composed of 
mixed grass prairie. Females strongly selected against cropland during the breeding season, even 
though only 4% of the study area was cropland. There was no evidence that selection of home 
ranges in relation to grazing system was different from random (P = 0.20), suggesting that 
females were not differentiating between pastures in the different grazing systems. 
Within home ranges, preliminary analyses suggested that a grain size of 1,300 m for grassland, 
1,300 m for wooded draws, 500 m for cropland, and 1,000 m for edge density represented the 
scale of strongest female habitat selection (Milligan 2019). However, the proportion of grassland 
was correlated with both the proportion of cropland and the density of edge habitat (see 
Supporting Information), so only the variable of proportion grassland was used in the full model. 
In the full analysis, distance to road and the proportion of wooded draws within 1,300 m were 
the only supported covariates, with indicator values > 0.25 (Fig. 10). Only distance to road had a 
95% credible interval that did not overlap zero (β = -0.047 ± 0.001), although differences in 
selection across the range of distances were small (Fig. 11). Furthermore, variability in selection 
as measured by σ2 for each predictor variable was high, indicating large differences in individual 
habitat selection (Fig. 12). A posterior predictive check suggested that the full model fit the data 
well, based on an estimated Bayesian p-value of 0.503. 
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Figure 10. Bayesian variable selection identifying important predictors of sharp-tailed grouse 
third-order habitat selection during the breeding season. Predictors with indicator variables ≤ 
0.25 are considered unimportant. 
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Figure 11. Relationship (± 95% credible intervals) between the distance to a road and the relative 
probability of selection of female sharp-tailed grouse within the breeding season home range. 
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Figure 12. Posterior estimates of the variability in selection (σ2 ± 95% credible intervals) among 
individual female sharp-tailed grouse for each habitat variable.  σ2 is a measure of how strongly 
individuals varied in selection for different habitat variables. Habitat variables were scaled prior 
to model fitting. 
 
 
Nest site selection.— We located 188 grouse nests (147 first nests, 41 renesting attempts) laid by 
128 individual females during 2016–2018. None of the underlying variables, including year, 
female age and nest attempt, improved model fit over the null model. Preliminary analyses 
suggested that visual obstruction at the nest bowl best predicted nest site selection and that a 
pseudo-threshold model best represented the relationship between visual obstruction and nest site 
selection, so only models with the natural log transformation of nest VOR were included in 
analyses (Milligan 2019). At the nest-level, nest site selection was best predicted by VOR at the 
nest bowl and the percentage of new grass, residual grass, and shrubs (ΔAICc = 0, wi = 0.61). At 
the home-range level, the model containing a measure of fragmentation (mean shape complexity 
or MSI) received the most support (ΔAICc = 0, wi = 0.56). In the final candidate model set, the 
model that included VOR at the nest bowl, the percentage residual grass, and MSI received the 
most support (ΔAICc = 0, wi = 0.61, Table 17). Confidence intervals for VOR, MSI, and 
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proportion residual grass and shrubs did not overlap zero, suggesting significant effects (Fig. 13). 
Percent cover of both residual grass (β = 0.48 ± 0.17) and shrubs (β = 0.33 ± 0.20) had small but 
positive effects on the relative probability of selection, while selection decreased with increasing 
fragmentation or MSI (β = -0.50 ± 0.16). Visual obstruction at the nest bowl had the largest 
effect on the relative probability of selection (β = 11.45 ± 1.31), with selection increasing up to a 
threshold of 20–30 cm (Fig. 13).  
 
Table 17. Support for final candidate models evaluating sharp-tailed grouse nest site selection 

in 2016–18 in the three analyses examining habitat-level variables, management-level 

variables, and the combined analysis. The number of parameters (K), AICc values, ΔAICc 

values, model weights (wi) and log-likelihoods are reported. VOR is visual obstruction as 

measured at the nest bowl and mean shape complexity (MSI) is a measure of patch shape 

irregularity and is defined as the sum of each landcover patch’s perimeter divided by the 

square root of each patch area and divided by the number of patches, such that it equals 1 

when all patches are circular. 

Model K AICc ΔAICc 
AICc 

wi 

Cum. 

wi 
LogLik 

Habitat Analysis       

ln(VOR) + %Residual + Mean Shape 

Complexity 
5 284.95 0.00 0.61 0.61 -137.40 

ln(VOR) + %Grass + %Residual + 

%Shrub + Mean Shape Complexity 
7 285.97 1.02 0.37 0.98 -135.83 

ln(VOR) + %Grass + %Residual + 

%Shrub 
6 293.20 8.25 0.01 0.99 -140.49 

ln(VOR) + %Residual 4 294.22 9.27 0.01 1.00 -143.06 
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 Mean Shape Complexity 3 524.93 239.97 0.00 1.00 -259.43 

Null 2 528.04 243.09 0.00 1.00 -262.00 

Management Analysis       

Stocking Rate (prv. yr) 3 526.45 0.00 0.26 0.26 -260.19 

Stocking Rate (prv. yr) + Grazing System 5 526.54 0.09 0.25 0.51 -258.19 

Null 2 528.04 1.59 0.12 0.63 -262.00 

Stocking Rate (cur. yr) 3 528.49 2.05 0.09 0.73 -261.22 

Grazing System 4 528.90 2.45 0.08 0.81 -260.40 

Stocking Rate (cur. yr) * Grazing System 7 529.71 3.26 0.05 0.86 -257.70 

Stocking Rate (cur. yr) + Grazing System 5 529.85 3.40 0.05 0.90 -259.85 

Grazing System * Stocking Rate (prv. yr) 7 530.34 3.89 0.04 0.94 -258.02 

Stocking Rate (prv. yr) + Year 5 530.51 4.06 0.03 0.98 -260.17 

Stocking Rate (cur. yr) + Year 5 532.47 6.02 0.01 0.99 -261.16 

Grazing System + Year 6 533.02 6.57 0.01 1.00 -260.40 

Grazing System * Year 10 541.07 14.62 0.00 1.00 -260.24 

Full Analysis       

ln(VOR) + %Residual + MSI 5 284.95 0.00 0.58 0.58 -137.40 

ln(VOR) + %Residual + MSI + Stocking 

Rate (prv. yr.) 
6 285.57 0.61 0.42 1.00 -136.67 

Stocking Rate (prv. yr.) 3 526.45 241.49 0.00 1.00 -260.19 

Null 2 528.04 243.09 0.00 1.00 -262.00 
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Figure 13. Estimated relative probability of nest site selection in relation to important habitat 
variables, with 85% confidence intervals shown in grey. Visual obstruction (VOR) was measured 
at the nest bowl. 
 
In the management-level analysis, models containing the linear effect of stocking rate from the 
previous year received the most support (wi = 0.51, Table 12), with 85% confidence intervals 
that did not overlap zero. The relative probability of selection declined with increasing stocking 
rates (β = -0.17 ± 0.10). However, in the full analysis, the model containing habitat variables 
(ΔAICc = 0, wi = 0.58) outperformed models with management-level variables (Table 17), with 
an evidence ratio for the model containing only habitat variables compared to the combined 
habitat and management model of 1.38. This suggests that grazing management was not an 
important predictor of nest site selection after controlling for other factors. 
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The marginal and conditional R2 for the top model were both 0.97. Model validation based on 
linear regression suggested high predictive accuracy, with an intercept of 0 (95% CI: -0.02–
0.06), slope of 0.91 (95% CI: 0.76–1.06), and a high coefficient of determination (R2 = 0.87). 
 
Objective 2a: Evaluate habitat selection by sharp-tailed grouse broods in relation to 
ecological site condition 
Two common limitations of rangeland wildlife habitat research to date are that 1) the scale of 
habitat variables assessed rarely matches the scale of population response to land management 
actions and 2) wildlife researchers often do not directly evaluate the ecological indicators on 
which rangeland managers make decisions. For example, previous assessments of habitat 
preferences of prairie-grouse typically focus on individual responses to local scale habitat 
conditions (e.g., grass height at nest sites; McNew et al. 2013), but rangeland management 
decisions are based on a different set ecological or habitat indicators (e.g., ecological site type 
and condition) and management actions occur at the scale of a pasture or ranch, not a nest site.  
To address these disconnects and provide relevant habitat management recommendations for 
rangeland managers, we evaluated the habitat selection patterns of sharp-tailed grouse broods at 
multiple orders of selection in relation to ecological site types and their relative condition.  An 
ecological site has specific characteristics that differ from other types of land in its ability to 
support a distinct kind and amount of vegetation (United States Department of Agriculture, 
2006). Ecological sites also vary in their ability to respond to natural disturbances and 
management practices because they integrate information about landscapes using both 
geophysical and biotic components including soil, climate, hydrology, landscape position, plant 
species occurrence, and plant community composition.  Ecological site descriptions (ESDs) are 
developed by the US Department of Agriculture Natural Resource Conservation Service (NRCS) 
at the state level and serve as a framework for making informed site- specific land management 
decisions (Herrick et al., 2006). Although ESDs do not reflect recent plant community changes 
caused by management and disturbances, they represent historic climax plant communities 
believed to dominate the site before Euro-American settlement. The potential productivity and 
composition of a site can be estimated by comparing the current plant community to the historic 
plant community using a similarity index, which can describe the extent of change on a site from 
its original condition. The similarity index, or “relative condition” can be measured over time to 
evaluate the effects of management activities (United States Department of Agriculture, 2006). 
We studied hierarchical habitat selection of radio-marked sharp-tailed grouse in the northern 
mixed-grass prairie of eastern Montana during 2016–2018 to evaluate associations with common 
rangeland indicators: ESDs and their relative condition (i.e., similarity index). Female prairie-
grouse have previously been found to select heterogeneous habitats during the breeding season 
characterized by variation in biotic and abiotic characteristics (McNew et al. 2014, Milligan et al. 
2020) and previous work has found strong associations between habitat use and vegetation 
conditions at multiple spatial scales (McNew et al. 2013). If ESDs and their relative condition 
determine vegetation communities, we expected to find significant interactive effects of these 
habitat descriptors on brood habitat selection of both home ranges within the study area (second-
order selection; Johnson, 1980) and fine-scale selection of use sites within home ranges (third-
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order selection). We hypothesized that ESDs selected by broods would be characterized by 
greater heterogeneity in vegetation conditions, especially the proportion of forbs and visual 
obstruction reading (VOR) which correspond to food resources and cover for prairie-grouse 
broods. 
Methods 
We captured grouse at 12 leks during the months of March–May using walk-in funnel traps. 
Females were fitted with VHF radio transmitters (model A4050; Advanced Telemetry Systems, 
Isanti, MN). Females with broods, determined by systematic brood flushes, were located 
remotely by triangulation at least 3 times/week during the breeding season (March–August). 
Coordinates for triangulated locations were calculated using Location of a Signal software 
(LOAS; Ecological Software Solutions LLC, Hegymagas, Hungary) and examined for spatial 
error. All locations with low estimation precision (>200 m error ellipse) were discarded. All 
animal handling was approved under Montana State University’s Institutional Animal Care and 
Use Committee (Protocol #2016-01). 
We obtained a map of soil map units, ecological sites and their accompanying ecological site 
descriptions (ESDs) collected by rangeland conservationists and soil scientists at the USDA-
NRCS office in Richland County, Montana. Detailed methodology for delineating and 
classifying ecological sites can be found in Chapter 4 of the National Range and Pasture 
Handbook (United States Department of Agriculture 2006) and Doherty et al. (2011).  
During 18 June – 4 July, 2018, we measured the condition within each ecological site at the 
study area using a similarity index to compare the current plant community to the historic plant 
community obtained from the ESDs (United States Department of Agriculture 2006). Each day, 
we calibrated our ocular estimates of similarity index at 10 randomly selected locations where 
we visually estimated the percent decreaser graminoid species contained in a 1 × 1-m plot. We 
then clipped vegetation in the plot and divided into two bags; one bag contained only decreaser 
grass species and the other contained all other vegetation (increaser grasses, forbs, shrubs, etc.). 
Both bags were weighed to estimate percentage dry weight of plant material at the current 
growth stage. We calculated the similarity index by dividing the weight of the decreaser 
graminoids to all other clipped vegetation to calibrate our visual estimates of proportion 
decreaser graminoids at within each ESD. After calibration, we conducted pasture-level surveys 
by walking pastures and estimating similarity index for each ESD polygon at a scale of 1 ha or 
greater (United States Department of Agriculture 2006). The similarity index was divided 
thematically into 5 classes: very low, low, moderate, high, and very high (Table 1). We then 
mapped the similarity index to each ESD polygon using ArcMap 10.6.1 (Environmental Systems 
Research Institute, Redlands, CA). 
We evaluated whether soil type, ESD, and similarity index were related to vegetation conditions 
previously found to influence habitat selection by sharp-tailed grouse (Milligan et al. 2018) at a 
subset of brood and paired locations within a study area defined by a minimum convex polygon 
around the leks of capture and buffered to 2 km (Connelly et al., 1998). Points that were 
inaccessible (e.g., in water, cultivated fields, on properties we did not have permission to access) 
were replaced. At these sites, we recorded visual obstruction readings (VOR; Robel et al., 1970) 
at the point and four points located 6 m from the center point. VOR was measured at each point 
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in all four cardinal directions from a distance of 2 m and a height of 0.5 m (Milligan et al., 2020). 
We also estimated non-overlapping vegetation cover classes (percent new grass, residual grass, 
forbs, shrubs, bare ground, and litter) at 12 subsampling points within 6 m of the brood site using 
a 20 × 50 sampling frame (Daubenmire, 1959). Vegetation surveys at brood locations and paired 
random locations occurred within 3 days of identified use.Statistical Analyses 
2nd Order Selection. – We examined second order selection, or selection of brood home ranges 
within the study area, using resource selection functions where use was evaluated for individuals 
and available habitat evaluated for the study population (design 2; Thomas and Taylor 1990). 
Available habitat was defined collectively for the population by as the 95% utilization 
distribution calculated for all locations across all three years within the study area using the 
adehabitat package in Program R (Aebischer et al. 1993). We plotted random points inside this 
study area polygon at a 1:40 ratio of used:available points (Milligan et al., 2020b). We 
transformed similarity index from a discrete ordinal variable with 5 classes to a continuous 
variable by using the midpoint value of similarity for each class. We developed spatially 
stationary RSFs where brood locations (use) and random points (available) were considered 
independent samples (Manly et al. 2002). We initially fitted generalized linear mixed models 
(GLMMs) with the logistic link function and a binomial error structure to evaluate RSFs, where 
brood identity was included as a random intercept in all models. However, initial model fits did 
not support inclusion of the random intercept term based upon evaluations of conditional and 
marginal R2, indicating a lack of autocorrelation of selection within individual broods 
(Nakagawa and Schielzeth 2013; Wyffels et al. 2020); we therefore fitted our RSFs with fixed 
effects only generalized linear models. Candidate models included main effects of soil type, 
ecological site description, and similarity index. We evaluated all univariate and additive 
combinations as well as an interaction model to test the hypothesis that the effect of ESD on 
habitat selection is mediated by similarity index. Models were then compared using Akaike’s 
Information Criterion (AICc); models with ΔAICc values ≤ 2 were considered parsimonious 
(Anderson and Burnham 2002). Effects were considered significant predictors of selection if 
estimated 95% confidence intervals did not include 0 (Arnold 2010). All statistical analyses were 
performed in R statistical software (ver. 4.0.2; R Development Core Team 2020, Vienna, 
Austria), where GLMMs were fit with the lme4 package (Bates et al. 2012).    
3rd Order Selection. – We examined the effects of ESD and similarity index on brood site 
selection using RSFs as described for 2nd order selection, except habitat availability was specific 
to each brood (Manly et al., 2002). Locations of radio-marked brood hens were considered used 
and random points were considered available following design 3 of Thomas and Taylor (1990) 
where a home range is defined for each individual and available points were sampled within the 
home range. Due to small and uneven sample sizes of used points among broods, home ranges 
were calculated using non-parametric minimum convex polygons with the adehabitat package in 
Program R. Minimum convex polygons of broods that had ≤ 5 locations were buffered by 200 m, 
the average distance moved by female grouse during the breeding season in our study, to prevent 
under-sampling areas that were available to each brood. Random points were plotted inside the 
home range of each brood at a 1:40 ratio of used:available points. Ecological site type (ESD) and 
similarity index were assigned to each used and available point using our spatial map. We 
evaluated competing models with fixed effects of ecological site description, similarity index, 
their additive and interaction effects, and soil type using AICc. We included a null model in the 
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candidate set and evaluated support for predictor effects based on evidence ratios and 95% 
confidence intervals of estimated effects (Anderson and Burnham 2002; Arnold 2010).  
We could not evaluate the effects of fine-scale vegetation conditions on brood habitat selection 
because we did not measure vegetation conditions at every brood location and random available 
point. Instead, we calculated descriptive statistics (e.g., means, standard deviation) for fine-scale 
vegetation (e.g., habitat) conditions at a subset of randomly sampled locations in relation to soil 
type, ESD, and similar index. 
Results 
We documented 845 brood use locations from 72 individual broods during May–August, 2016–
2018. Three ESDs comprised approximately 88% of the study area (Table 18). Brood use 
locations were distributed broadly across ESDs; brood locations occurred in 10 of the 12 ESDs 
identified within the study area.  Although the majority (69%) of brood locations occurred in 
ecological sites described as silty, selection ratios indicated potential preferences for a variety of 
ESDs (Table 18). Brood locations occurred in 15 of 21 soil types available within the study area 
(Fig. 14); however, 81% of brood locations occurred in four soil types (Table 18). The average ± 
SD similarity index across the study area was 37 ± 16% with 98% of the study area having 
similarity index of ≤ 60% (very low – moderate similarity). The average similarity index at 
brood use locations was 35% ± 16%.  
 

Table 18. Number and proportions of brood use locations relative to availability on the 
study area in Richland County, Montana, 2016–2018.  

  # Brood 
Locations 

Proportion of 
Brood 

Locations 

Proportion 
Available 

Selection 
Ratio 

Ecological Site   
  

     Clayey 1 0.0012 0.0005 2.40 
     Gravelly 15 0.0178 0.0155 1.15 
     Shallow Loamy 158 0.187 0.0055 34.00 
     Loamy – Rolling Soft 
Shale 35 0.0414 0.1134 0.37 
     Limy Residual 36 0.0426 0.036 1.18 
     Silty-Sedimentary 288 0.3408 0.0363 9.39 
     Silty-Steep 295 0.3491 0.4635 0.75 
     Saline Upland 12 0.0142 0.3079 0.05 
     Saline Lowland 5 0.0059 0.0013 4.54 
Soil Typea 

    
     201C 101 0.1195 0.1102 1.08 
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     202D 137 0.1621 0.2437 0.67 
     53C 36 0.0426 0.0363 1.17 
     53D 158 0.187 0.1134 1.65 
     BmB 12 0.0142 0.0069 2.07 
     CeA 14 0.0166 0.0362 0.46 
     CeB 5 0.0059 0.0115 0.51 
     E2147C 35 0.0414 0.0360 1.15 
     Lc 6 0.0071 0.0327 0.22 
     LfF 289 0.342 0.2596 1.32 
     Lo 1 0.0012 0.0005 2.28 
     ShA 4 0.0047 0.0243 0.19 
     ShB 27 0.032 0.0369 0.87 
     TeF 15 0.0178 0.0155 1.15 
     Tw 5 0.0059 0.0062 0.96 
     CeC 0 0   
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Figure 14. Similarity index and ecology sites within the study area in eastern Montana. 

 
Habitat selection by broods 
The effect of soil type on second-order selection of home ranges by brood hens had high relative 
support (ΔAICc = 0, wi > 0.99). Models that included the effects of ESD and similarity index, as 
well as a null model, received virtually no support (Table 19). Selection of some soil types (e.g., 
53D) by broods was high relative to others (e.g., ShA), and we did not document brood use in six 
soil types (Table 19; Fig. 15). We also observed relatively high selection ratios for BmB and Lo 
soil types. However, these soil types were rare (<1% of the study area) and the number of brood 
use locations were few; 13 of 845 brood locations (1.5%) occurred at BmB and Lo sites. 
Productivity index scores were similar between soil types with selection ratios >1 (42 ± 35SD) 
and those with ratios <1 (51 ± 35). 
Within home ranges, third-order habitat selection by broods was best predicted by similarity 
index. A model that included just similarity index had most of the support (AICc wi = 0.81) and 
models that included similarity index had virtually all support (cumulative AICc wi > 0.99; Table 
19). The relative probability of selection decreased as similarity index increased (β = -0.78 ± 
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0.22; Fig. 16). We found little evidence that ecological site type had an effect on relative brood 
habitat selection within home ranges (ΔAICc = 10.5, wi < 0.001), and our hypothesis that ESD 
interacted with similarity index to influence habitat selection was also not supported (ΔAICc wi < 
0.001; Table 19). 
 
Table 19. Support for candidate models predicting second- and third-order selection of brood-
rearing female sharp-tailed grouse during 2016–2018. 
 

Model K AICc ΔAICc AICc wi Cumulative wi 
2nd Order Habitat Selection      

  Soil Type 21 7797.63 0.00 >0.99 1.00 

  Ecological Site × Similarity 
Index 

21 7835.72 38.09 <0.01 1.00 

  Ecological Site + Similarity 
Index 

13 7853.01 55.39 0.00 1.00 

  Ecological Site  12 7854.32 56.69 0.00 1.00 

  Null (constant model) 1 7914.65 117.02 0.00 1.00 

  Similarity Index 2 7916.63 119.00 0.00 1.00 

3rd Order Habitat Selection      

  Similarity Index 2 7863.03 0.00 0.81 0.81 

  Ecological Site × Similarity 

Index 19 7867.01 3.98 0.11 0.92 

  Ecological Site + Similarity 

Index 11 7868.10 5.06 0.06 0.98 

  Soil Type 18 7872.77 9.74 0.01 0.99 

  Null (constant model) 1 7873.21 10.18 <0.01 1.00 

  Ecological Site 10 7873.52 10.50 0.00 1.00 
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Figure 15. Relative probability of second-order selection by sharp-tailed grouse broods relative 
to soil type in eastern Montana, 2016–2018.  

 
Figure 16.  Predicted effect of similarity index on the relative probability of third-order brood 
selection in eastern Montana, 2016–2018.  
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Habitat Conditions 
Vegetation conditions were variable across and within soil map units (Fig. 4). With the exception 
of shrub cover, average vegetation conditions were similar across categories of similarity index 
(Fig. 4). However, variability in VOR tended to decline with similarity index (Table 1). Average 
VOR was 1.78 ± 1.41SD, 1.09 ± 0.74, and 2.45 ± 0.55 dm in areas classified as very low, 
moderate, and high similarity index, respectively. Nevertheless, areas classified as having high 
similarity were rare (n = 2 sampling points) and no sites were classified as having very high 
similarity (Table 1). Forb cover was also somewhat higher and much more variable within sites 
with very low similarity index relative to sites with moderate and high similarity index (Table 
20; Fig. 17). Higher similarity indexes were associated with higher shrub coverages; average ± 
SD shrub coverages were 2.8 ± 4.9% and 16.5 ± 13.3% for the very low and very high similarity 
index classes, respectively (Fig. 17). 
 
 

Table 20. Similarity index classes, values, coverage of the study area, and associated vegetation conditions (VORa  
and % forbs) considered important to sharp-tailed grouse broods in eastern Montana, 2016-2018. 

Similarity 
Index (%) Class % Decreaser 

Graminoids 

% of 
Sampling 

Points 

VORa     
mean ± SD 

CV 
VOR 

% Forbs  
mean ± SD 

CV         
% Forbs 

81-100 Very high (VH) >50 0 -- -- -- -- 
61-80 High (H) 40 3 2.46 ± 0.54 0.22 6.6 ± 0.14 0.02 
41-60 Moderate (M) 30 46 1.09 ± 0.73 0.67 8.3 ± 4.81 0.58 
21-40 Low (L) 20 34 1.67 ± 1.08 0.65 8.2 ± 4.56 0.55 
0-20 Very low (VL) <10 17 1.78 ± 1.41 0.79 14.1 ± 12.0 0.85 
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Figure 17. Boxplots of fine-scale vegetation conditions relative to soil map unit (soil type) and 
similarity index in eastern Montana, 2016–2018. Vegetation was measured at random points. 
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Products Resulting from Objective 2 
Milligan, M.C., L.I. Berkeley, and L.B. McNew. 2020. Effects of rangeland management on the 
nesting ecology of sharp-tailed grouse. Rangeland Ecology and Management 73:128–137. 
Milligan, M.C., L.I. Berkeley, and L.B. McNew. 2020. Habitat use of sharp-tailed grouse in 
rangelands managed for livestock. PloSOne 15(6): e0233756. 
Macon, L.K., M.C. Milligan, J.C. Mosley, and L.B. McNew. In review. Habitat selection by 
sharp-tailed grouse broods in relation to common rangeland management indicators. Submitted 
to Rangeland Ecology and Management. 
 
Objective 3: Evaluate the ecological effects of various grazing treatments with a focus on 
rest rotation grazing by examining abundance and space use of the grassland bird and 
meso-predator communities 
Objective 3a: Effects of livestock grazing management on grassland birds abundance and 

community structure 
Methods: 
We surveyed grassland birds and vegetation at 610 points (305 each season) randomly located 
across gradients of habitat conditions within the Montana FWP UGBEP, managed under rest-
rotation grazing (300 points; Hormay, 1970), and on adjacent lands managed under season-long 
(120 points) or 2-pasture summer-rotation (190 points) grazing systems. Of the three grazing 
systems evaluated, we had 3 replications of each rest-rotation and summer-rotation systems and 
2 replications of season-long grazing systems. Within the 3-pasture rest-rotation grazing systems, 
cattle were turned out to the first pasture in late May, moved to the second pasture mid-August, 
and were removed for the season after 8 – 10 weeks; the third pasture in the system was rested 
from grazing. Season-long grazing systems in the study area allowed cattle to graze continuously 
from May or early June through October or mid-November. Within 2-pasture summer-rotation 
grazing systems in the study area, cattle were turned out to the first pasture in early June, moved 
to the second pasture after 6 – 8 weeks, and were removed early-mid November. At the scale of 
each management unit, rest-rotation grazing systems had a mean annual stocking rate of 2.82 
AUM ⋅ ha-1 (range 2.29 – 3.34 AUM ⋅ ha-1), summer-rotation systems had a mean stocking rate 
of 1.98 AUM ⋅ ha-1 (range 1.61 – 2.66 AUM ⋅ ha-1), and season-long systems had a mean 
stocking rate of 1.24 AUM ⋅ ha-1 (range 0.8 - 1.5 AUM ⋅ ha-1; Table S2).  
Point-Count Surveys. – We collected data during two grassland bird breeding seasons (May – 
June, 2016–17). Avian point-count surveys began after all grassland bird species had arrived for 
the breeding season and were completed within a 4-week period to assume breeding population 
closure. To avoid double counting of individuals and assure statistical independence, survey 
points were spaced > 300 m apart. Points were located > 200 m from pasture boundaries to avoid 
counting birds using multiple pastures, and were located > 400 m from oil pads and > 250 m 
from gravel roads to control for bird avoidance of these areas (Thompson et al., 2015). We 
conducted three consecutive, yet independent 5-minute point-count surveys at each point. This 
survey method maximized observer efficiency, while simultaneously achieving population 
closure between survey visits, an assumption for statistical modeling of these types of count data 
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(Royle, 2004; Kéry et al., 2005). A single trained observer identified and tallied all birds detected 
visually or aurally within 100 m of the survey point (Ralph et al., 1993). At each survey location, 
the observer recorded the date, time, and wind speed. Point-count surveys were conducted from 
one-half hour before sunrise through no later than 0900h MST. We did not conduct bird surveys 
if average wind speed exceeded 16 km/hr, or during rainfall.  
We defined grassland-associated species as those which have become reliant upon grassland 
habitat for part or the entirety of their life cycle (Vickery et al., 1999). We selected three focal 
species as representative of three broader guilds or assemblages of grassland bird species with 
overlapping niche requirements within their habitats (Root, 1967), the grasshopper sparrow 
(Ammodramus savannarum), vesper sparrow (Pooecetes gramineus), and western meadowlark 
(Sturnella neglecta). These three ground-nesting obligate grassland species have specific habitat 
requirements of native grasslands for breeding, recruitment, and survival throughout the summer 
grazing season (Poole, 2005). Habitat preferences for each of these three species are variable 
across ecoregion, but in the northern mixed-grass prairie, grasshopper sparrows generally select 
for moderate to high vegetation height, density, and litter availability (Dechant et al., 2003b; 
Fritcher et al., 2004; Lipsey and Naugle, 2017), thus representing the dense-grass guild at our 
study area. Vesper sparrows are often associated with lower vegetation densities and have a 
higher tolerance for shrub encroachment within grassland habitats (Browder et al., 2002; 
Dechant et al., 2003a), and represent the sparse-grass guild. Western meadowlarks are typically 
considered habitat generalists and are often one of the most common species within grassland 
habitats of the western United States (Davis and Lanyon, 2008), thus representing the generalist 
guild. 
Vegetation Surveys. – We measured local vegetation conditions within bird survey areas the 
same day point-count surveys were conducted. We established three 20-m transects of 5 subplots 
per transect within 100 m of each survey point, with one transect located at the survey point and 
oriented in a random direction, and two transects located and oriented randomly within 100 m of 
the point. At each subplot, we measured visual obstruction from the north at a distance of 2 m 
and a height of 0.5 m (VOR; Robel et al., 1970) and vegetation coverages using methods of 
Daubenmire (1959), where overlapping coverages of residual grass, litter, forb, and bare ground 
were recorded in one of six percentage classes (0–5, 5–25, 25–50, 50–75, 75–95, and 95–100 %). 
Midpoints of percentage classes were recorded for each vegetation coverage measurement. We 
measured heights (cm) of the nearest plant to the center of the frame for each residual grass and 
litter. We also conducted line-intercept surveys along each transect to estimate shrub foliar cover 
(hereafter “shrub cover”) within point-count survey areas. The species of each shrub intersecting 
the transect was recorded, as well as the height and length of the shrub as it crossed the transect 
(Canfield, 1941). We used ArcGIS 10.4 (ESRI, 2011) to digitize the wooded coulees and pasture 
fences within the study area using five band 1-m resolution aerial imagery from the National 
Agricultural Imagery Program (NAIP) available through the USDA Farm Service Agency. From 
these digitized layers, we derived the total area of wooded coulees and fences to calculate 
relative densities within and surrounding bird survey areas.  
In uneven terrain, randomly generated survey points are often located on hillsides, which may 
reduce the ability of observers to see and hear birds. We used ArcGIS Spatial Analyst extension 
and a 10-m digital elevation model (DEM) raster layer to calculate viewshed size to model as a 
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function of grassland bird detection probability (ESRI, 2011), defining viewshed as the area 
visible to the observer within 100 m of the bird survey point. 
We quantified rangeland production potential associated with each bird survey area using Soil 
Survey Geographic Database (SSURGO) ecological site data from the Natural Resources 
Conservation Service (NRCS) Web Soil Survey (Lipsey and Naugle, 2017; USDA NRCS, 
2017). We utilized these data as a reasonable index of average rangeland productivity (Relyea et 
al., 2000), as rangeland managers implement long-term livestock grazing systems based on the 
expected annual vegetation production of their rangelands in a normal year. We calculated the 
weighted average rangeland production potential within 100 m of each bird survey point, 
effectively accounting for point count survey areas which encompassed multiple ecological sites. 
We selected the production values under average precipitation, as weather conditions during our 
study were considered normal. 
We obtained livestock numbers, weights, and turn-in/turn-out dates from our collaborating ranch 
managers and calculated stocking rates within our pastures based on an animal unit month 
(AUM), the amount of forage, measured on a dry weight basis, to feed a 1,000-lb animal for a 
30-day period (Holechek et al., 2011). Pastures within our study area were stocked with a 
mixture of 1,300-lb cow-calf pairs and 800-lb yearling steers and heifers, which were considered 
1.3 and 0.8 AU’s, respectively. Stocking rates from the previous year’s summer grazing season 
were used as a predictor of grassland bird abundance, as breeding territories had already been 
established within pastures prior to cattle turn-out dates in our study area (Ahlering and Merkord, 
2016). Additionally, grassland bird selection of breeding territory is likely relative to residual 
vegetation from previous growing seasons, as most of the new growth initiates after grassland 
bird breeding territories have been established in the northern mixed-grass prairie (Davis, 2005). 
Statistical Analyses 
Community Composition. – We used the nonparametric Multi-Response Permutation Procedure 
(MRPP) to assess the effects of livestock grazing management on grassland bird community 
composition (Ahlering and Merkord, 2016). Multivariate analyses allow for the detection of 
patterns among many species within a community in relation to variables of interest, such as 
vegetation conditions or treatment effects (Conner and Adkisson, 1977). The MRPP evaluates 
differences among groups of entities and calculates a statistic of chance-corrected within-group 
agreement, A (Mielke 1984; 1991). The A statistic compares observed within-group homogeneity 
to that which is expected by chance, where A = 0 is the result expected at random. We randomly 
selected a number of survey sites per grazing system equal to the system with the fewest number 
of survey points [season-long] so sampling effort was equal, and selected the survey visit with 
the maximum count for each site. We then created a matrix of bird species by sites and used the 
Bray-Curtis distance measure (Bray and Curtis, 1957; Faith et al., 1987) within the MRPP to 
analyze grassland bird community composition among three grazing systems [season-long, 
summer-rotation, rest-rotation grazing] and among the three treatments within rest-rotation 
grazing systems [grazing during the growing season, grazing post-growing season, rest from 
grazing]. Six grassland-associated bird species (Table S1) had fewer than 5 total detections and 
were considered transients (non-breeders) and excluded from the community composition 
analyses (Hovick et al. 2015). We displayed grassland bird community separation among grazing 
systems and among rest-rotation treatments using Nonmetric Multi-Dimensional Scaling 
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(NMDS) ordinations (Kruskall, 1964; Minchin, 1987). Statistical analyses were conducted in 
program R (R Core Team, 2017). The MRPP and NMDS were conducted within R package 
‘vegan’ (Oksanen et al., 2015). Figures were created using R package ‘ggplot2’ (Wickham, 
2016). 
Abundance. – We considered sets of competing models at 3 scales in our evaluation of livestock 
grazing on grassland bird abundance; local-, landscape-, and management-scale. We evaluated 
the effects of specific vegetation conditions on grassland bird abundance at the local-scale 
(within 100 m of the survey point) and landscape-scale (within 500 m and 1,000 m). 
Implementation of livestock grazing systems, manipulation of stocking rates, and evaluation of 
rangeland production potential within pastures are three main considerations of range managers 
on an annual basis, i.e. management-scale. We used R packages ‘unmarked’ (Fiske and 
Chandler, 2011) and ‘AICcmodavg’ (Mazerolle, 2013) to identify specific effects on abundance 
of each focal species using N-mixture abundance models (Royle, 2004). The N-mixture model 
simultaneously estimates detection probability (p) and abundance of unmarked individuals 
identified during spatially replicated counts within a closed survey period (Royle, 2004). 
Based on hypothesized relationships for each covariate included in our models, we evaluated 
whether a linear, quadratic, or pseudo-threshold (pseudo-asymptotic) effect (Franklin et al., 
2000) was best supported for its influence on avian detection probability or abundance. We then 
used stepwise model selection techniques to identify the variables influencing detection 
probability and abundance for each focal grassland bird species, starting with a highly 
parameterized model and eliminating uninformative parameters based on their lack of influence 
in the model, identified by lowest |z| (Montgomery et al., 2012; Ahlering and Merkord, 2016). 
Variables considered to influence detection probability of grassland birds were Julian day, 
observer, shrub cover, shrub height, time of day, viewshed, wind speed, and year. Models 
evaluating detection probabilities of grassland birds were fit prior to fitting abundance models.  
The vegetation conditions we measured in the field were previously shown to influence 
grassland bird detection probability or local abundance (Fisher and Davis, 2010; Ahlering and 
Merkord, 2016), and stepwise model selection was appropriate in the absence of any a priori 
hypotheses. Variables considered to influence abundance of grassland birds at the local-scale 
were bare ground cover, litter cover and depth, residual grass cover and height, shrub cover and 
height, wooded area, VOR, and the standard deviation of VOR (sdVOR) as a measurement of 
fine-scale heterogeneity in vegetation structure (Fisher and Davis, 2010; Thompson et al., 2014; 
Sliwinski et al., 2019). Litter cover and depth were correlated (Pearson’s correlation estimate, r > 
0.6), so we excluded litter cover from further analyses, as it may underestimate the true amount 
of litter available (Ricketts and Sandercock, 2016). Two variables were considered to influence 
abundance of grassland birds at the landscape-scale (500 m and 1000 m), wooded area and fence 
density (Sutter et al. 2000; Cunningham and Johnson, 2006; Thompson et al., 2014). Non-natural 
structures such as fence posts and fence lines can function as artificial perches in grassland 
landscapes and may attract some species of grassland birds (i.e., western meadowlark, vesper 
sparrow) to broadcast their songs during the breeding season (Sutter et al., 2000; Thompson et al. 
2015). We did not include multiple spatial scales in a single model to avoid issues of 
multicollinearity (Thompson et al., 2014).  
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We used Akaike’s Information Criterion adjusted for finite samples (AICc) to compare models 
and identify important variables to include in the final detection or abundance model for each 
grassland bird species. Supported models with large model weights (wi) and AICc values ≤ 2 
from the best-fit model were considered parsimonious (Burnham et al., 2011). When a supported 
model differed from the best-fit model by a single parameter, we considered the additional 
parameter to be uninformative (Arnold, 2010). We built a candidate model set for the 
management-scale effects on avian abundance based on a priori hypotheses, which included 
additive effects, along with 2- and 3-way interactions. Factors hypothesized to affect avian 
abundance at the management-scale were grazing system, stocking rate, and rangeland 
production potential. 
We assessed model fit for the top model within local-, landscape-, and management-scale 
analyses for each focal species from 1,000 simulated datasets using the Nmix.gof.test function 
within R package ‘AICcmodavg’ (Mazerolle, 2013). Goodness-of-fit tests indicated ĉ estimates 
between 0.75 and 1.0, and P-values > 0.95 for the most parsimonious models within each model 
set, providing strong evidence the models adequately fit the data. The best-fit model within our 
local-, landscape-, and management-scale analysis was then used to generate predictions of focal 
species abundance over the range of values for each variable, while holding other variables 
included in the best-fit model at their mean. When multiple models shared support (ΔAICc values 
≤ 2), model averaged estimates were used to generate predictions of grassland bird detection 
probabilities and local abundance (Cade, 2015). 
Habitat. – Vegetation metrics quantifying grassland bird habitat were summarized among 
grazing systems and among the three treatments within rest-rotation systems and evaluated using 
mixed effects analysis of variance (ANOVA). We used R package ‘lme4’ (Bates et al., 2012) to 
build models and included year and site as random effects to account for potential 
autocorrelation resulting from repeated measures at sites in 2016 and 2017 and because 15 
vegetation plots were measured at each site (Sliwinski et al., 2019). 
Results: 
During 2016–17, we conducted 1,830 point-count surveys within eight pastures managed with 
cattle grazing and identified a total of 68 bird species, 31 of which were grassland-associated 
species (Table 21). We found that no grassland-associated species with >5 detections (non-
transient) was unique to a single grazing system. Using the rarified subset of community data, we 
recorded 21 grassland-associated species in pastures within rest-rotation grazing systems, 24 
species in two-pasture summer-rotation grazing systems, and 22 in season-long grazing systems. 
Grassland bird community separation among grazing systems was minimal, indicated by results 
from the MRPP and visualized by the NMDS ordination plot of species by site polygons 
representing the bird communities recorded within each grazing system (Fig. 18A). The MRPP 
indicated 2.0% of the variation in grassland bird community composition could be attributed to 
livestock grazing system (A: 0.020, P < 0.001). In addition, community composition was similar 
among the three types of grazing treatments within the rest-rotation system, where 0.4% of the 
variation in grassland bird communities can be attributed to the differences among these three 
treatments (A: 0.004, P = 0.04; Fig. 18B). Generally, the occurrences of Baird’s sparrow 
(Ammodramus bairdii), bobolink (Dolichonyx oryzivorus), grasshopper sparrow, horned lark 
(Eremophila alpestris), Sprague’s pipit (Anthus spragueii), upland sandpiper (Bartramia 
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longicauda), and western meadowlark were associated, and this group tended to be dissociated 
with occurrences of clay-colored sparrow (Spizella pallida), eastern kingbird (Tyrannus 
tyrannus), field sparrow (Spizella pusilla), lark sparrow (Chondestes grammacus), loggerhead 
shrike (Lanius ludovicianus), mountain bluebird (Sialia currucoides), mourning dove (Zenaida 
macroura), and western kingbird (Tyrannus verticalis). 
 
Table 21. Bird species observed during 2016 and 2017 avian point-count surveys at 610 
sites on 8 pastures managed for livestock grazing in eastern Montana. 
Common Name Scientific Name  4-letter Codea 

American Crow Corvus brachyrhynchos AMCR 
American Goldfinch Carduelis tristis AMGO 
American Kestrel* Falco sparverius AMKE 

American Robin Turdus migratorius AMRO 
American Widgeon Anas americana AMWI 
Baird’s Sparrow* Ammodramus bairdii BAIS 

Bank Swallow Riparia riparia BANS 
Baltimore Oriole Icterus galbula BAOR 
Barn Swallow Hirundo rustica BARS 
Black-billed Magpie Pica hudsonia BBMA 
Belted Kingfisher Megaceryle alcyon BEKI 
Brown-headed Cowbird Molothrus ater BHCO 
Black-headed Grosbeak Pheucticus melanocephalus BHGR 
Bobolink* Dolichonyx oryzivorus BOBO 

Brewer’s Blackbird Euphagus cyanocephalus BRBL 
Brewer’s Sparrow* Spizella breweri BRSP 
Brown Thrasher Toxostoma rufum BRTH 
Bullock’s Oriole Icterus bullockii BUOR 
Canada Goose Branta canadensis CAGO 
Clay-colored Sparrow* Spizella pallida CCSP 

Cedar Waxwing Bombycilla cedrorum CEDW 
Chipping Sparrow Spizella passerina CHSP 
Cliff Swallow Petrochelidon pyrrhonota CLSW 
Common Grackle Quiscalus quiscula COGR 
Common Nighthawk* Chordeiles minor CONI 
Common Yellowthroat* Geothlypis trichas COYE 
Eastern Bluebird* Sialia sialis EABL 

Eastern Kingbird* Tyrannus tyrannus EAKI 

European Starling Sturnus vulgaris EUST 
Field Sparrow* Spizella pusilla FISP 

Gray Catbird Dumetella carolinensis GRCA 
Grasshopper Sparrow* Ammodramus savannarum GRSP 
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Hairy Woodpecker Leuconotopicus villosus HAWO 
Horned Lark* Eremophila alpestris HOLA 

House Wren Troglodytes aedon HOWR 
Killdeer* Charadrius vociferus KILL 
Lark Bunting Calamospiza melanocorys LARB 

Lark Sparrow* Chondestes grammacus LASP 

Least Flycatcher Empidonax minimus LEFL 
Loggerhead Shrike* Lanius ludovicianus LOSH 

Marbled Godwit* Limosa fedoa MAGO 
Mallard Anas platyrhynchos MALL 
Mountain Bluebird* Sialia currucoides MOBL 
Mourning Dove* Zenaida macroura MODO 
Northern Flicker Colaptes auratus NOFL 
Northern Harrier* Circus hudsonius NOHA 
Northern Rough-Winged Swallow Stelgidopteryx serripennis NRWS 

Orchard Oriole Icterus spurius OROR 

Prairie Falcon* Falco maxicanus PRFA 
Ring-necked Pheasant* Phasianus colchicus RNEP 
Rock Pigeon Columba livia ROPI 
Rock Wren Salpinctes obsoletus ROWR 
Red-tailed Hawk Buteo jamaicensis RTHA 
Red-winged Blackbird* Agelaius phoeniceus RWBL 
Say’s Phoebe* Sayornis saya SAPH 
Sprague’s Pipit* Anthus spragueii SPPI* 
Spotted Towhee Pipilo maculatus SPTO 
Sharp-tailed Grouse* Tympanuchus phasianellus STGR 

Tree Swallow Hirundo nigricans TRES 
Upland Sandpiper* Bartramia longicauda UPSA 

Vesper Sparrow* Pooecetes gramineus VESP 
Western Kingbird* Tyrannus verticalis WEKI 

Western Meadowlark* Sturnella neglecta WEME 
Western Wood-Pewee Contopus sordidulus WEWP 

Willow Flycatcher Empidonax traillii WIFL 

Yellow-breasted Chat Icteria virens YBCH 

Yellow-headed Blackbird* Xanthocephalus xanthocephalus YHBL 

Yellow Warbler Dendroica petechia YWAR 

* Indicates grassland associated speces 
A 4-letter codes from the American Ornithological Society’s checklist of birds. 
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Figure 18. Grassland bird community composition among (A) grazing systems, and among (B) 
three treatments within rest-rotation grazing systems in eastern Montana, 2016–17. Scores from 
nonmetric multidimensional scaling (NMDS) analyses, representing relative distances among 
bird communities at each site in 2-diminsional ordination, are displayed as the x- and y-axis. 
Grayscale polygons represent the grassland bird communities associated with each of three 
grazing systems or treatments. The A statistic from the MRPP and significance of the test (P-
value) are reported. (A) ●= sites within rest-rotation grazing systems, ▲ = sites within season-
long grazing systems, and ■ = sites within summer-rotation grazing systems. (B) ● = sites within 
growing-season treatment, ▲ = sites within the post growing-season treatment, and ■ = sites 
within the rested treatment. 
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Grasshopper Sparrow. – The probability of detecting a grasshopper sparrow increased with 
viewshed (β = 0.11 ± 0.06), decreased with time of day from 05:00 to 09:00 (β = -0.27 ± 0.06; 
Tables 22, 25), and showed quadratic relationships with Julian day and shrub height, where the 
probability of detection was maximized during the middle of the survey season (~158th Julian 
day; 7 June) and at a shrub height of ~30 cm (Fig. 19). After accounting for detection 
probability, two models shared support (ΔAICc ≤ 2, Σwi = 0.75) for local-scale effects on 
grasshopper sparrow abundance (Table 22). Local abundance was maximized at approximately 
10% bare ground cover, 15 cm residual grass height, and 3 cm litter depth, declined linearly with 
shrub height (β = -0.8 ± 0.03), and showed a strong negative pseudo-asymptotic relationship with 
wooded area, where predicted abundance decreased dramatically beyond 0 % wooded (β = -0.35 
± 0.04; Table 4, Fig. 4). A single model was supported for landscape-scale effects on 
grasshopper sparrows (wi = 0.96; Table 23). Local abundance decreased sharply with increasing 
fence density (β = -0.08 ± 0.03) within a 500-m2 area of the survey point and decreased sharply 
when wooded area within a 1000-m2 area of the point increased beyond 2 % (Fig. 20). 
 

 
 
Figure 19. Predicted relationships for the effects of environmental or survey conditions on 
detection probability of grasshopper sparrow in eastern Montana, 2016–17. 
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Figure 20. Predicted relationships between local- and landscape-scale habitat conditions and 
local abundance of grasshopper sparrow in eastern Montana, 2016–17. 
 
 
A single model of grasshopper sparrow abundance at the management-scale had strong support 
(wi = 0.81) and included an interaction between grazing system and rangeland production 
potential, as well as a negative effect of stocking rate (Table 24). Abundance was positively 
associated with rangeland production in season-long grazing systems (β = 0.25 ± 0.11), while a 
quadratic relationship was supported in summer-rotation (βproductivity + βproductivity

2 = 0.60 (0.08SE) 
- 0.30 (0.08)) and rest-rotation grazing systems (βproductivity + βproductivity

2 = 0.39 (0.05) - 0.18 
(0.03)), where predictions indicate abundance was maximized at intermediate values of 
rangeland production potential, from 1,700 – 2,000 kg ⋅ ha-1 (Table 25, Fig. 21A). Grasshopper 
sparrow abundance decreased with stocking rate (β = -0.10 ± 0.03; Fig. 22), and the effect was 
similar among grazing systems. 
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Figure 21. Relationships between rangeland production potential and predicted local abundance 
of (A) grasshopper sparrow, (B) vesper sparrow, and (C) western meadowlark among three 
grazing systems in eastern Montana, 2016–17. 
 
 



75 
 

 
Figure 22. Relationships between stocking rate and predicted local abundance of three grassland 
bird species in eastern Montana, 2016-17. 
 
Vesper Sparrow. – The probability of detecting a vesper sparrow was higher in 2017 than 2016 
(β = 0.50 ± 0.14), decreased with viewshed (β = -0.19 ± 0.07) and wind speed (β = -0.15 ± 0.07; 
Table 25), and exhibited a quadratic relationship with Julian day, where detection probability 
was lowest during the middle of the survey season (~ 4 June; Fig. 23). Four models shared 
support (ΔAICc ≤ 2) for local-scale effects on abundance of vesper sparrows (Table 22). Models 
including the main effects of bare ground, litter depth, shrub cover, and visual obstruction had 
the majority of support (Σwi = 0.77). Abundance increased with bare ground cover up to 75 % (β 
= 0.16 ± 0.06) and litter depth up to 5 cm (β = 0.11 ± 0.05), decreased with visual obstruction 
from 0 to 5 dm (β = -0.11 ± 0.05), and showed a positive pseudo-asymptotic relationship to shrub 
cover, where abundance increased sharply from 0 – 5 % cover but was similar beyond 5 % (β = 
0.17 ± 0.05; Table 25, Fig. 24). Models including landscape-scale variables wooded coulee area 
and fence density shared support (ΔAICc ≤ 2.0; Table 23). Local abundance increased 
asymptotically with wooded area (β = 0.15 ± 0.05) within 1,000-m2 of the survey point, up to 6 
% wooded (Fig. 24). Vesper sparrow abundance decreased with fence density (β = -0.07 ± 0.04) 
within 1,000-m2 area of the survey point.  
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Two models shared support (ΔAICc < 2.0) for management-scale effects on vesper sparrow 
abundance (Table 24). The top-ranked model (wi = 0.59) included main effects of grazing system 
and rangeland production potential, while the next top model (wi = 0.31) included the additional 
main effect of stocking rate, a parameter that may be uninformative. Relative to rest-rotation 
grazing systems, abundance of vesper sparrow was higher in summer-rotation grazing systems (β 
= 0.25 ± 0.10) and similar in season-long systems (β = -0.17 ± 0.14; Table 25, Fig. 21B). Vesper 
sparrow abundance decreased with rangeland production potential at the study area from 500 – 
2,500 kg ⋅ ha-1 (β = -0.13 ± 0.05), and the effect was similar among grazing systems (Fig. 21B). 
A model that included a negative effect of stocking rate on abundance of vesper sparrows was 
supported (β = -0.04 ± 0.05; Table 24), but the 95% confidence interval of the effect overlapped 
0 (-0.13–0.05). 
 
 

 
Figure 23. Predicted relationships for the effects of environmental or survey conditions on 
detection probability of vesper sparrow in eastern Montana, 2016–17. 
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Figure 24.  Predicted relationships between local- and landscape-scale habitat conditions and 
local abundance of vesper sparrow in eastern Montana, 2016–17. 
 
Western Meadowlark. – The probability of detecting a western meadowlark was higher in 2017 
than 2016 (β = 0.37 ± 0.11), increased with viewshed (β = 0.10 ± 0.05), and decreased with 
Julian day (β = -0.32 ± 0.05) and wind speed (β = -0.08 ± 0.05; Table 22, Fig. 25). Models that 
included the effects of visual obstruction, residual grass cover, forb cover, litter depth, and bare 
ground cover had the majority of support (wi = 0.73) on local-scale abundance of western 
meadowlarks (Table 22). Abundance increased asymptotically with litter depth from 0 to 5 cm (β 
= 0.22 ± 0.05) and forb cover from 0 to 50 % (β = 0.09 ± 0.03) and decreased with visual 
obstruction from 0 – 5 dm (β = -0.16 ± 0.03), residual grass cover from 0 to 80 % (β = -0.11 ± 
0.04), and bare ground cover from 0 to 75 % (β = -0.09 ± 0.04; Table 25, Fig. 26). Abundance of 
western meadowlark decreased (β = -0.06 ± 0.03) with increasing wooded area within 1000-m2 
area of the survey point from 0 to 7 % (Fig. 26). 
Two models shared support (ΔAICc < 2.0) for management-scale effects on western meadowlark 
abundance (Table 24). The top model included an interaction between grazing system and 
rangeland production potential, and a negative effect of stocking rate (wi = 0.60). The data also 
supported a model that included main effects of rangeland production potential and stocking rate 
(wi = 0.31). Model-averaged predictions show abundance of western meadowlark increased with 
rangeland production potential in season-long (β = 0.11 ± 0.06) and rest-rotation grazing systems 
(β = 0.15 ± 0.04; Fig. 21C), and declined sharply with stocking rate from 0 – 0.1 AUM ⋅ ha-1 (β = 
-0.09 ± 0.03; Fig. 22; Table 25). Predictions from the two supported models estimate abundance 
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of western meadowlark was highest in summer-rotation grazing systems in areas of relatively 
low production potential (<1,000 kg ⋅ ha-1) and in season-long and rest-rotation systems in areas 
of relatively high production potential (>1,500 kg ⋅ ha-1; Fig. 21C). 
 

 
Figure 25. Predicted relationships for the effects of environmental or survey conditions on 
detection probability of western meadowlark in eastern Montana, 2016–17. 
 

 
 
Figure 26. Predicted relationships between local- and landscape-scale habitat conditions and 
local abundance of western meadowlark in eastern Montana, 2016–17. 
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Table 22. Model selection results evaluating the effects of local-scale habitat conditions on abundance of grassland 
birds in eastern Montana, 2016–17. 

Modela Kb AICc ΔAICc wi ∑ wi 

Grasshopper Sparrow      
RH2 + LD2 + BG2 + SH + ln(WA)c 16 4159.20 0.00 0.43 0.43 
RH2 + LD2 + BG2 + SH + ln(WA) + ln(RC) 17 4159.77 0.57 0.32 0.75 
Constant (null) 2 4450.64 291.44 0.00 1.00 

Vesper Sparrow      

VOR + Forb + LD + BG + ln(SC) 12 3025.45 0.00 0.28 0.28 
VOR + Forb + LD + BG + ln(SC) + RH 13 3026.22 0.77 0.19 0.48 
VOR + LD + BG + ln(SC) 11 3026.64 1.18 0.16 0.63 
VOR + Forb + LD + BG + ln(SC) + RH + RC 14 3026.99 1.53 0.13 0.77 
Constant (null) 2 3071.97 46.52 0.00 1.00 

Western Meadowlark      

VOR + RC + ln(LD) + BG + ln(Forb) 11 4832.06 0.00 0.32 0.32 
VOR + RC + ln(LD) + BG + ln(Forb) + RH + SC 13 4832.93 0.87 0.21 0.53 
VOR + RC + ln(LD) + BG + ln(Forb) + SC 12 4833.01 0.95 0.20 0.73 
Constant (null) 2 4965.84 133.77 0.00 1.00 

a Only supported models with ΔAICc values ≤ 2.0 and the null model are presented for each species. 
b K = number of parameters. 
c BG = Bare ground cover, Forb = Forb cover, LD = Litter depth, RC = Residual grass cover, RH = Residual grass 
height, SC = Shrub cover, SH = Shrub height, VOR = Visual obstruction reading, sdVOR = standard deviation of 
VOR, WA = Wooded coulee area, 2 = quadratic effect, ln() = pseudo-threshold effect. 

 

 



80 
 
Table 23. Model selection results evaluating the effects of 
landscape-scale habitat conditions on abundance of grassland birds 
in eastern Montana, 2016–17. 

Modela Kb AICc ΔAICc wi ∑ wi 

Grasshopper Sparrow      
WA10002 + ln(FD500)c 12 4297.63 0.00 0.95 0.95 
Constant (null) 9 4378.75 81.12 0.00 1.00 

Vesper Sparrow      

ln(WA1000) + FD1000 8 3044.03 0.00 0.57 0.57 
ln(WA1000) 7 3044.59 0.56 0.43 1.00 
Constant (null) 6 3054.34 10.31 0.00 1.00 

Western Meadowlark      

WA1000 7 4896.91 0.00 0.52 0.52 
WA1000 + FD500 8 4898.41 1.49 0.24 0.76 
Constant (null) 6 4898.46 1.55 0.24 1.00 

a Only supported models with ΔAICc values ≤ 2.0 and the null model 
are presented for each species. 
b K = number of parameters. 
c FD500 = Fence density at the 500 m spatial scale, FD1000 = Fence 
density at the 1,000 m scale, WA500 = Wooded area at the 500 m 
scale, WA1000 = Wooded area at the 1,000 m scale, 2 = quadratic 
effect, ln() = pseudo-threshold effect. 
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Table 24. Model selection results evaluating the management-scale effects of 
grazing system, stocking rate, and rangeland production potential on grassland 
bird abundance in eastern Montana, 2016–17. 

Modela Kb AICc ΔAICc wi ∑ wi 

Grasshopper Sparrow      
GS × RPP2 + SRc 15 4179.33 0.00 0.81 0.81 
RPP 2 + SR 11 4183.35 4.02 0.11 0.92 
GS + RPP 2 + SR 13 4184.75 5.42 0.05 0.97 
GS × SR + RPP2  13 4186.20 6.87 0.03 1.00 
Constant (null) 8 4420.10 240.77 0.00 1.00 

Vesper Sparrow      

GS + RPP 10 3034.13 0.00 0.59 0.59 
GS + RPP + SR 11 3035.44 1.31 0.31 0.90 
GS 9 3039.80 5.67 0.04 0.94 
RPP 8 3041.30 7.17 0.02 0.96 
Constant (null) 7 3049.63 15.50 0.00 1.00 

Western Meadowlark      

GS × RPP + ln(SR) 12 4879.37 0.00 0.60 0.60 
RPP + ln(SR) 10 4880.72 1.35 0.31 0.91 
GS + RPP + ln(SR) 12 4885.32 3.91 0.08 0.91 
GS × ln(SR) + RPP 12 4885.36 3.95 0.08 0.99 
Constant (null) 6 4903.97 22.56 0.00 1.00 

a Only models with AICc weights (wi) > 0.01 and the null model are presented for 
each species. 
b K = number of parameters. 
c GS = Grazing system, RPP = Rangeland production potential, SR = Stocking 
rate, 2 = quadratic effect, ln() = pseudo-threshold effect. 
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Table 25. Effects of standardized local habitat, landscape-scale habitat, and management-scale 
variables on the abundance of three focal species in eastern Montana, 2016–17. Also included 
are the effects of year, Julian day, time of day, shrub height, and wind speed on probability of 
detection. a, b 

 Grasshopper 
Sparrow 

 Vesper  
Sparrow 

 Western 
Meadowlark 

 

 β SE  β SE  β SE  
Detectionc          
Intercept 1.65 0.08  -0.46 0.13  0.13 0.09  
Year, 2017    0.50 0.14  0.37 0.11  
Day 0.01 0.05  0.08 0.07  -0.32 0.05  
Day2 -0.12 0.04  0.16 0.06     
Time -0.27 0.06        
Viewshed 0.11 0.06  -0.19 0.07  0.10 0.05  
Shrub height 0.04 0.07        
Shrub height2 -0.08 0.03        
Wind speed    -0.15 0.07     
ln(Wind speed)       -0.08 0.05  
          
Abundance, local habitat          
Intercept 0.86 0.04  0.06 0.06  0.96 0.04  
Residual grass cover       -0.11 0.04  
Residual grass height 0.06 0.04        
Residual grass height2 -0.06 0.02        
Litter depth 0.20 0.04  0.11 0.05     
Litter depth2 -0.05 0.02        
ln(Litter depth)       0.22 0.05  
Bare ground -0.10 0.04  0.16 0.06  -0.09 0.04  
Bare ground2 -0.07 0.03        
Shrub height -0.08 0.03        
ln(Wooded coulee) -0.35 0.04        
VOR    -0.11 0.05  -0.16 0.03  
Forb    0.08 0.04     
ln(Forb)       0.09 0.03  
ln(Shrub cover)    0.17 0.05     
          
Abundance, landscape          
Intercept 0.92 0.04  0.07 0.06  1.00 0.04  
Wooded coulee (1000 m) -0.15 0.04     -0.06 0.03  
Wooded coulee2 (1000 m) -0.18 0.04        
ln(Wooded coulee; 1000 m)    0.15 0.05     
Fence density (1000 m)    -0.07 0.04     
ln(Fence density; 500 m) -0.08 0.03        
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Table 25. continued          
 Grasshopper 

Sparrow 
 Vesper  

Sparrow 
 Western 

Meadowlark 
 

 β SE  β SE  β SE  
Abundance, management          
Intercept 0.86 0.04  0.03 0.07  1.02 0.04  
Season-long GS    -0.17 0.14     
Summer-rotation GS    0.25 0.10     
Stocking rate -0.10 0.03        
ln(Stocking rate)       -0.09 0.03  
RPP    -0.13 0.05     
Season-long GS × RPP 0.25 0.11     0.11 0.06  
Season-long GS × RPP2 -0.02 0.07        
Summer-rotation GS × RPP 0.60 0.08     -0.01 0.06  
Summer-rotation GS × RPP2 -0.30 0.08        
Rest-rotation GS × RPP 0.39 0.05     0.15 0.04  
Rest-rotation GS × RPP2 -0.18 0.03        

a Abundance covariates are presented on the log-scale and detection covariates on the logit scale. 
b Bold numbers indicate the 95% confidence intervals did not overlap 0. 
c GS = Grazing system, RPP = Rangeland production potential, SR = Stocking rate, VOR = 
Visual obstruction reading, 2 = quadratic effect, ln() = pseudo-threshold effect. 

 
 
Habitat. – We analyzed the local habitat metrics collected at 9,150 plots within 610 bird survey 
areas among the three grazing systems, in addition to landscape-scale metrics wooded coulee 
area and fence density for each survey point. Several habitat components differed among grazing 
systems, including residual grass cover (P < 0.01), forb cover (P = 0.08), litter depth (P < 0.01), 
bare ground cover (P < 0.01), and shrub cover (P = 0.01) and height (P < 0.01; Table 26). On 
average, plots in season-long grazing systems had the highest (x̄ ± SE) residual grass cover (47.6 
% ± 1.5), residual grass height (16.3 cm ± 0.67), litter depth (1.6 cm ± 0.07), and the lowest 
shrub cover (3.5 % ± 0.57) and height (18.5 cm ± 1.2). Plots in pastures managed with rest-
rotation grazing had greater bare ground cover (22.4 % ± 0.81) and lower residual grass cover 
(37.7 % ± 0.93) and litter depth (1.3 cm ± 0.04), on average. Rest-rotation systems also included 
greater forb cover (11.0 % ± 0.32) relative to other systems (Table 26). Fence density at 500-m 
and 1,000-m scales was highest for sites within rest-rotation pastures, at 10.5 (± 0.41) and 12.9 
(± 0.24) m ⋅ ha-1, respectively. Generally, residual grass cover and litter depth were greater in 
2017, and VOR, residual grass height, and forb cover were greater in 2016 (Table 27). 
Several local vegetation components differed among treatments within rest-rotation systems, 
including residual grass cover (P < 0.01), residual grass height (P < 0.01), litter depth (P < 0.01), 
and bare ground cover (P < 0.01; Table 28). Residual grass height (15.8 cm ± 0.34) and litter 
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depth (1.6 cm ± 0.08) were highest and bare ground cover was lowest (18.3 % ± 1.2) in the 
pastures rested from grazing the previous year. Residual grass cover was lowest in post-growing 
season treatments (32.5 % ± 1.3), and similar between growing-season (40.3 cm ± 1.9) and 
rested treatments (39.9 cm ± 1.5). 
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Table 26. Habitat metrics among three grazing systems in eastern Montana, 2016–17. Mean, standard error, minimum and 
maximum values presented for each variable. P-values reported for ANOVA on mixed-effects and generalized linear 
models among the three grazing systems. 

 Season-long (n = 120)  Rest-rotation (n = 300)  Summer-rotation (n = 190)  ANOVAa 

 x̄ SE Min Max  x̄ SE Min Max  x̄ SE Min Max  P-value 

VOR (dm) 0.92 0.05 0.0 2.5  0.90 0.04 0.07 5.0  0.95 0.04 0.07 5.1  0.74 

Standard deviation VOR 0.61 0.04 0.0 3.4  0.75 0.04 0.18 4.6  0.72 0.04 0.18 4.6  0.22 

Residual grass cover (%) 47.6 1.5 8.3 83.5  37.7 0.93 3.0 81.2  42.1 1.2 3.3 81.3  <0.01 

Residual grass height (cm) 14.4 0.47 3.5 32.5  13.3 0.26 3.5 30.9  13.7 0.31 4.7 26.1  0.20 

Forb cover (%) 10.3 0.38 1.3 19.3  11.0 0.32 1.8 53.2  9.8 0.32 0.67 26.3  0.08 

Litter depth (cm) 1.6 0.07 0.40 4.3  1.3 0.04 0.0 5.1  1.4 0.05 0.23 3.4  <0.01 

Bare ground cover (%) 15.5 1.1 0.0 71.2  22.4 0.81 0.33 85.3  19.8 0.96 0.17 68.8  <0.01 

Shrub cover (%) 3.5 0.57 0.0 48.5  6.4 0.55 0.0 69.0  6.2 0.62 0.0 44.8  0.01 

Shrub height (cm) 18.5 1.2 0.0 59.3  25.2 0.95 0.0 85.0  26.5 1.1 0.0 76.7  <0.01 

% Wooded coulee (100-m) 0.52 0.21 0.0 16.9  1.8 0.25 0.0 26.3  1.9 0.33 0.0 24.5  0.01 

% Wooded coulee (500-m) 0.81 0.10 0.0 4.5  2.0 0.09 0.0 6.9  2.4 0.14 0.0 11.1  <0.01 

% Wooded coulee (1000-m) 1.4 0.08 0.04 3.7  2.0 0.06 0.52 4.8  2.6 0.10 0.89 7.5  <0.01 

Fence density (m ⋅ ha-1; 
500-m) 

6.3 0.60 0.0 22.1  10.5 0.41 0.0 30.3  8.3 0.53 0.0 28.4  <0.01 

Fence density (m ⋅ ha-1; 
1000-m) 

8.7 0.36 0.0 20.0  12.9 0.24 4.8 26.4  9.4 0.39 0.0 17.9  <0.01 

Rangeland production 
potential (kg ⋅ ha-1) 

1789 29 1027 2608  1372 27 197 2625  1518 26 616 2389  <0.01 

a Analysis of Variance on mixed-effects and generalized linear models. Cover variables were logit transformed prior to analysis. 
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Table 27. Habitat metrics among three grazing systems by year in eastern Montana, 2016–17. Mean and standard error are 
presented for each variable. 

 Season-long (n = 120)  Rest-rotation (n = 300)  Summer-rotation (n = 190)  

 2016 2017  2016 2017  2016 2017  

 x̄ SE x̄ SE  x̄ SE x̄ SE  x̄ SE x̄ SE  
VOR (dm) 1.22 0.06 0.61 0.05  1.15 0.05 0.66 0.06  1.28 0.07 0.62 0.04  

Standard deviation VOR 0.68 0.06 0.55 0.06  0.78 0.05 0.73 0.06  0.79 0.07 0.66 0.05  

Residual grass cover (%) 42.5 1.99 52.8 1.98  32.2 1.23 43.2 1.25  38.3 1.78 45.8 1.59  

Residual grass height (cm) 16.3 0.67 12.4 0.55  14.6 0.37 12.1 0.35  14.6 0.45 12.7 0.43  

Forb cover (%) 10.8 0.49 9.91 0.56  11.5 0.49 10.6 0.40  10.4 0.48 9.21 0.43  

Litter depth (cm) 1.46 0.12 1.71 0.06  1.10 0.06 1.58 0.04  1.12 0.06 1.74 0.06  

Bare ground cover (%) 15.9 1.76 15.2 1.39  22.5 1.18 22.2 1.11  21.1 1.62 18.6 1.11  
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Table 28. Habitat metrics among the three treatments within rest-rotation grazing systems in eastern Montana, 2016–17. 
Mean, standard error, minimum and maximum values presented for each variable. P-values reported for ANOVA on 
mixed-effects and generalized linear models among the three treatments. 
 Growing Season (n = 102)  Post Seed-ripe (n = 96)  Rested (n = 102)  ANOVAa 

 x̄ SE Min Max  x̄ SE Min Max  x̄ SE Min Max  P-value 

VOR (dm) 0.80 0.06 0.07 5.0  0.94 0.08 0.07 4.3  0.98 0.04 0.10 3.1  0.15 

Standard deviation VOR 0.75 0.08 0.18 4.6  0.84 0.08 0.18 4.3  0.67 0.05 0.18 3.3  0.34 

Residual grass cover (%) 40.3 1.9 3.0 81.2  32.5 1.3 9.7 71.2  39.9 1.5 7.5 74.5  <0.01 

Residual grass height (cm) 12.4 0.42 5.0 30.9  11.8 0.50 3.5 24.5  15.8 0.34 6.7 25.5  <0.01 

Forb cover (%) 10.9 0.69 2.2 53.2  10.7 0.46 2.0 21.0  11.5 0.45 1.8 24.2  0.54 

Litter depth (cm) 1.3 0.06 0.0 3.1  1.2 0.06 0.45 4.2  1.6 0.08 0.33 5.1  <0.01 

Bare ground cover (%) 24.7 1.5 0.50 85.3  24.2 1.4 1.3 72.0  18.3 1.2 0.33 70.7  0.01 

a Analysis of Variance on mixed-effects and generalized linear models. Cover variables were logit transformed prior to analysis. 
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Objective 3b: Effects of livestock grazing management on mesocarnivore space use 
Methods 
Field sampling. – We collected data during two summer field seasons (May – July, 2016–17).  
Using ArcGIS (ESRI 2011, v10.1), We randomly generated 180 camera trap survey sites (90 
each season) across gradients of habitat conditions within a Montana FWP Upland Gamebird 
Enhancement Program project managed under rest-rotation grazing, and on adjacent private and 
federal lands managed under season-long or 2-pasture summer-rotation grazing systems (Table 
29, Figure 27). Within the 3-pasture rest-rotation grazing systems in the study area, cattle were 
turned out to the first pasture in late May, moved to the second pasture mid-August, and turned 
in after grazing the second pasture for 8–10 weeks; the third pasture in the system was rested 
from grazing. Season-long grazing systems in my study area allowed cattle to graze continuously 
from May or early June through October or mid-November. Within 2-pasture summer-rotation 
grazing systems in the study area, cattle were turned out to the first pasture in early June, moved 
to the second pasture after 6 – 8 weeks, and turned in for the season in early November. The 
summer-rotation grazing systems stocked cattle in the same pastures each year during 
approximately the same period of the summer grazing season. This is unlike typical 2-pasture 
deferred-rotation grazing systems, where pastures are not grazed during the same period of the 
summer grazing season in consecutive years.  
 

Table 29. Pastures of study, size, and number of camera trap sites in eastern  
Montana during 2016–17. 

Pasture1 Grazing System Size (ha) Camera Traps2 

Rest.Ro1 Rest-rotation 1,169 31 

Rest.Ro2 Rest-rotation 1,107 29 

Rest.Ro3 Rest-rotation 730 20 

Summ.Ro1 2-Pasture Summer-rotation 550 12 

Summ.Ro2 2-Pasture Summer-rotation 1,908 26 

Summ.Ro3 2-Pasture Summer-rotation 277 8 

Se.Long1 Season-long 856 26 

Se.Long2 Season-long 413 12 

1 Pasture locations within the study area are displayed in Appendix A, Figure A1. 
2 Of 180 camera trap sites surveyed, 16 were censored from analyses. 
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We deployed one passive infrared remote field camera (Browning BTC 5HD, Browning, 
Morgan, UT) at each of 90 camera trap sites during three sampling sessions in 2016 and 2017 
(Table 29). Thus, 30 remote cameras were used to survey 180 sites during two field seasons. 
Sampling sessions ranged from 20 – 25 days (Table 30), and one sampling occasion was defined 
as a 5-day (120 hour) period. Partial sampling days (days of camera installation or removal) were 
excluded from sampling periods.  
 
 

Table 30. Sampling periods for mesocarnivore 
camera trapping in eastern Montana during  
2016–17. 

Year Sampling 
Period Date Range1 

2016 1 134 – 158 

2016 2 160 – 179 

2016 3 182 – 201 

2017 1 139 – 163 

2017 2 165 – 184 

2017 3 186 – 205 

1 Julian day (1 – 365). 

 
To maximize mesocarnivore detections, camera traps were set in the most optimal location 
within 200 m of the site, often areas along habitat edges where predators typically prefer to hunt 
and forage (Andrén 1995), or along game trails. Camera traps were spaced > 250 m apart to 
satisfy the assumption of site independence (Lesmeister et al. 2015). However, selection for the 
most optimal camera trap location within 200 m of the site unknowingly resulted in 20 camera 
traps set < 250 m from another camera trap. Of these, 8 were spaced 200 – 250 m apart and 
included in analyses, while 12 were less than 200 m apart and censored from analyses. 
Additionally, 4 camera trap sites were censored due to camera malfunction (2), cattle destruction 
(1), or theft (1). Of 180 original camera sites, 164 sites were used in analyses.  
Due to the relatively small size of my study area (~7,000 ha), and the large home range of some 
mesocarnivores (coyote, summer range > 1,500 ha; Gosselink et al. 2003), the assumption of 
spatial independence of camera sites may be violated. As such, the definition of occupancy in my 
study is not necessarily true occupancy, but rather habitat use of mesocarnivores, as defined by 
Krausman (1999). Habitat use is a relevant and informative metric, as my main objective for this 
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aspect of the study is to evaluate the influence of livestock grazing management on 
mesocarnivore use. This definition of occupancy will allow comparison among grazing systems 
in terms of mesocarnivore habitat use. 
 

 
Figure 27. Study area in Richland County, Montana and McKenzie County, North 
Dakota, USA during 2016–17. Camera trap sites within pastures on the Montana 
FWP Upland Gamebird Enhancement Program project managed in a rest-rotation 
grazing system, and on adjacent pastures managed in season-long or summer-
rotation grazing systems. 
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Cameras were programmed to be active 24 hours per day, with a two-photo burst for each 
photographic event and a 1-minute delay between events. Cameras were motion-activated, so a 
photographic event occurred when the remote camera was triggered by the presence of a 
mesocarnivore. Date, time, and camera identity were recorded by the camera for each 
photographic event. Cameras were secured to tree trunks or mounted on metal stakes and 
positioned approximately 0.5 m above the ground. When present, cameras were faced toward 
game trails to maximize detections. The area in front of each camera was cleared of obstructive 
vegetation, and a scent or bait lure was placed 2 m in front of the camera. Lures were used to 
increase mesocarnivore detections, and in 2016, consisted of a combination of fatty acid scent 
disks (U.S. Department of Agriculture Pocatello Supply Depot, Pocatello, ID), trapping lure 
(Gusto; Minnesota Trapline Products, Inc., Pennock, MN), and/or sardines. Only trapping lure 
was used in 2017. All camera sites during each sampling period received the same lure. During 
each sampling period, camera sites were revisited weekly to replenish lures, swap memory cards, 
change camera batteries, and remove any new obstructive vegetation. 
Habitat Evaluation. – The study area was a contiguous, native grassland managed for livestock 
grazing, resulting in relatively few areas of common edge habitats, with which mesocarnivores 
are typically associated. We identified 5 potential habitat edges within the study site: wooded 
coulees, roads and two-tracks, pasture fences, water features, and oil pads. We used ArcMap 
10.4 to digitize each of these features within the study site using five band 1-m resolution aerial 
imagery from the National Agricultural Imagery Program (NAIP) developed by the U.S. Farm 
Service Agency (ESRI 2011, v10.4). Data was obtained from Montana State Library GIS 
Clearinghouse and North Dakota GIS Hub Data Portal. We merged each of these features into a 
single ‘edge’ layer, and intersected this layer with buffered camera sites at 100-m, 500-m, and 
1,000-m radial areas for analyses at multiple spatial scales (ESRI 2011, v10.4). We used the 
ArcMap ‘Calculate Geometry’ tool to estimate the total length of edge habitat associated at 
camera sites, and calculated edge density by dividing edge length by area at each of 100-m, 500-
m, and 1,000-m spatial scales (ESRI 2011, v10.4). We used the ArcMap ‘Near’ tool to estimate 
the distance from each camera site to the nearest wooded coulee, pasture fence, road or two-
track, water feature, or oil pad (ESRI 2011, v10.4). 
Rangeland managers implement grazing systems based on the expected annual vegetative 
production of rangelands in an average year. We quantified rangeland production potential 
associated with each camera trap site using the Soil Survey Geographic database (SSURGO) 
ecological site data from the Natural Resources Conservation Service (NRCS) Web Soil Survey 
(NRCS 2017). NRCS defines rangeland production as “the amount of vegetation that can be 
expected to grow annually in a well-managed area that is supporting the potential natural plant 
community” (NRCS 2017). Previous researchers have found NRCS estimates of rangeland 
production potential based on the SSURGO ecological site data were reasonable estimates of 
true average rangeland productivity (Relyea et al. 2000). We calculated the weighted average 
rangeland production potential within 100 m of each camera trap site using the representative 
values (RV) of rangeland production for each ecological site type in the study area (Table 31), 
effectively accounting for camera trap sites which encompassed multiple ecological sites. We 
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used the representative values of rangeland production potential, as precipitation during the years 
prior to field work was approximately average. 

Table 31. Total areas of each ecological site and associated  
values of rangeland production potential on 8 pastures in  
eastern Montana and western North Dakota during 2016–17.  
Representative values of production potential are based on  
Soil Survey Geographic Database (SSURGO) ecological  
site data from the Natural Resources Conservation Service  
(NRCS) Web Soil Survey. 

Ecological Site 
Description 

Representative 
Value1 

Total 
Area2 

Wetland 6613 0.08 
Wet Meadow 3923 0.25 
Loamy Overflow 3587 47.38 
Sandy Terrace 3363 1.56 
Loamy Terrace 3250 22.93 
Saline Lowland 2802 14.70 
Sands 2802 86.27 
Closed Depression 2690 0.05 
Loamy 2690 688.0 
Sandy 2690 114.48 
Clayey 2130 132.08 
Limy Sands 2018 6.44 
Limy Residual 1905 1817.25 
Claypan 1681 87.40 
Shallow Loamy 1569 1189.01 
Shallow Sandy 1569 32.59 
Clayey-Steep 1233 588.33 
Thin Loamy 1121 125.16 
Shallow Clayey 1009 24.36 
Badlands Fan 897 1119.20 
Thin Claypan 897 27.19 
Very Shallow 897 160.01 
Badland 0 402.67 
Non-site3 0 20.95 
Rock Outcrop 0 17.73 

1 Representative Value (RV) defined as the rangeland production (kg ⋅ 
ha-1) during a year with average  
precipitation. 
2 Total area (hectares) of each ecological site and  
associated value of rangeland production potential 
within the study area. 
3 Open water classified as Non-site. 
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We interviewed landowners to gather cattle turn-out/turn-in dates and number of head stocked to 
calculate stocking rates for the pastures within my study area. These dates and numbers were 
validated by observation of when and approximately how many cattle were present in pastures 
during both grazing seasons. We calculated stocking rates within pastures based on an animal 
unit month (AUM), the amount of forage, measured on a dry weight basis, to feed a 1,000-lb 
cow-calf pair for a 30-day period (Holechek et al. 2011). The average cow-calf pair grazing on 
the pastures within the study area was approximately 1,400 lbs (635 kg) based on landowner 
interviews, so we accounted for this in our calculations of stocking rate. Typically, stocking rates 
consider all pastures within a multi-pasture grazing system, resulting in a single stocking rate for 
the system. We calculated the stocking rates of each individual pasture within the 3-pasture rest-
rotation and 2-pasture summer-rotation grazing systems because we were interested in the 
indirect effects of livestock grazing on mesocarnivore occupancy through livestock alteration of 
vegetation structure. Stocking rates from the previous year’s grazing season were used as a 
predictor of mesocarnivore occupancy, as residual vegetation from the previous year’s grazing 
establishes habitat structure used by mesocarnivores for hunting and foraging activities during 
the grassland bird breeding season when we conducted camera trap surveys. 
Statistical Analyses. – We evaluated the effects of edge density (100-m, 500-m, and 1,000-m 
scale) and distance to the nearest wooded coulee, road, fence, water, and oil pad on 
mesocarnivore occupancy. We also evaluated the management-level effects of rangeland 
production potential (100-m scale), stocking rate, and grazing system on mesocarnivore 
occupancy. The habitat variables were considered for their direct effect on mesocarnivore 
occupancy through habitat use, whereas the three management-level variables were considered 
for their indirect effect on mesocarnivore occupancy through the ability of livestock grazing to 
alter vegetation structure within rangelands. Rangeland production potential is included in the 
management-level model set because range managers consider the average production potential 
of rangelands when implementing grazing systems or manipulating livestock stocking rates.  
We conducted all analyses in program R (R Core Team 2016) with use of packages ‘unmarked’ 
(Fiske and Chandler 2011) and ‘AICcmodavg’ (Mazerolle 2013) to identify specific effects on 
occupancy of mesocarnivores, where single-season occupancy modeling allowed for 
simultaneous estimation of detection probability and occupancy (MacKenzie et al. 2006). 
Accounting for imperfect detection is important to avoid bias in studies evaluating 
mesocarnivore occupancy using remote camera traps (Lesmeister et al. 2015). We used single-
season occupancy modeling to increase the number of sites, as We was not interested in 
immigration or emigration from sites among years. 
We used stepwise model selection techniques (backward selection) to identify the factors 
influencing mesocarnivore detection probability and occupancy, where We started with a highly 
parameterized model and eliminated uninformative parameters based on their lack of influence 
on mesocarnivore detection probability or occupancy (Montgomery et al. 2012). Models related 
to mesocarnivore detection probability were fit prior to fitting models for local mesocarnivore 
occupancy. We pooled all mesocarnivore species for analyses due to low detection probabilities 
within each single species (MacKenzie et al. 2002). If a mesocarnivore was detected at a camera 
site during a sampling occasion, the site was considered occupied. Previous researchers have 
suggested, in grassland ecosystems with relatively high predator diversity, management actions 
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to reduce grassland bird nest depredation may not prove successful if they do not consider the 
entire predator community (Renfrew and Ribic 2003, Pietz et al. 2012). 
Prior to fitting occupancy models, we tested all covariates for multicollinearity, removing those 
which were highly correlated (Pearson’s correlation estimate |r| > 0.6) from further analyses. 
Edge density at 100-m and 500-m spatial scales were correlated (r = 0.66), and edge density at 
500-m and 1000-m scales were correlated (r = 0.77). We removed edge density at the 500-m 
spatial scale from further analyses because it was correlated across the other two spatial scales 
(100-m and 1,000-m), and this metric assessed at two scales was uncorrelated. Edge density 
(100-m) and distance to nearest wooded coulee were correlated (r = -0.63). We kept edge density 
and removed distance to the nearest coulee from analyses because mesocarnivores typically use 
habitat edges while hunting and foraging (Andrén 1995), and my metric of edge density includes 
wooded coulee, along with other habitat edges. For each variable included in detection and 
occupancy models, We evaluated whether a linear, quadratic, or pseudo-threshold (pseudo-
asymptotic) effect (Franklin et al. 2000) was best supported for its influence on mesocarnivore 
detection probability or occupancy. 
Variables included in the detection probability model were year, cattle presence, visit, Julian day 
(134–201), and the amount of precipitation during each 5-day visit. Variables included in the 
habitat model were cattle presence, edge density (100-m and 1,000-m spatial scales), and 
distance to nearest road or two-track, pasture fence, water feature, and oil pad. Once stepwise 
model selection was complete, we used Akaike’s Information Criterion adjusted for finite 
samples (AICc) to evaluate model support and identify important variables to include in the final 
detection or abundance model. Supported models with large model weights (wi) and AICc values 
≤ 2 from the best-fit model were considered parsimonious (Burnham et al. 2011). When a 
supported model differed from the best-fit model by a single parameter, we considered the 
additional parameter to be uninformative and excluded this parameter from inclusion in the final 
model (Arnold 2010). We built a candidate model set for the management-scale effects on 
mesocarnivore occupancy based on a priori hypotheses, which included additive effects, along 
with 2- and 3-way interactions (Table 32). Factors hypothesized to affect mesocarnivore 
occupancy at the management-level were grazing system, stocking rate, and rangeland 
production potential. 
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Table 32. Candidate model set for the management-level effects on mesocarnivore occupancy in 
eastern Montana during 2016–17. 

Model Description 

Null Null Model 

Mod1 Grazing System 

Mod2 Stocking Rate 

Mod3 Rangeland Production Potential 

Mod4 Grazing System + Stocking Rate 

Table 5. continued 

Model Description 

Mod5 Grazing System + Rangeland Production Potential 

Mod6 Stocking Rate + Rangeland Production Potential 

Mod7 Grazing System + Stocking Rate + Rangeland Production Potential 

Mod8 Grazing System × Stocking Rate 

Mod9 Grazing System × Rangeland Production Potential 

Mod10 Rangeland Production Potential × Stocking Rate 

Mod11 Grazing System × Stocking Rate + Rangeland Production Potential 

Mod12 Grazing System × Rangeland Production Potential + Stocking Rate 

Mod13 Grazing System × Stocking Rate × Rangeland Production Potential 

 
We assessed model fit for the best-fit model within habitat- and management-level analyses for 
mesocarnivores from 1,000 simulated datasets using the mb.gof.test function within 
AICcmodavg (Mazerolle 2013). Goodness-of-fit tests indicated ĉ estimates between 1.3 and 1.5, 
and p-values < 0.1 for the most parsimonious models within each model set, providing evidence 
for potential overdispersion in the data. However, we identified the cause of lack-of-fit as two 
sites which had encounter histories of 11110, where the expected number of sites with this 
encounter history was 0.1, which substantially inflated the chi-square statistic. We temporarily 
removed these two sites with encounter histories 11110 from the analysis and re-ran the 
goodness-of-fit test, which resulted in ĉ estimates between 0.7 and 1.0, and p-values > 0.95 for 
the most parsimonious models within each model set. These results indicated that the models 
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adequately fit the data, and the original evidence for overdispersion was a result of two sites with 
unexpected encounter histories. 
The best-fit model within habitat- and management-level analyses was used to generate 
predictions of mesocarnivore occupancy over the range of values for each variable, while 
holding other variables included in the best-fit model at their means. When multiple models 
shared support (ΔAICc values ≤ 2), model averaged estimates were used to generate predictions 
of mesocarnivore detection probability and occupancy. 
Results 
We recorded 178 mesocarnivore detections during 3,535 camera trap days at 164 remote camera 
sites located within 8 pastures managed for cattle grazing. We detected 5 species of 
mesocarnivores during camera trap surveys: American badger, coyote, raccoon, striped skunk, 
and weasel (Mustela spp.). Coyote was recorded at 69 of 164 camera sites, raccoon at 25 sites, 
American badger at 22 sites, striped skunk at 10 sites, and weasel at 4 sites. We recorded 4 
species in pastures employing each of the three grazing systems: rest-rotation, summer-rotation, 
and season-long grazing systems. Striped skunk was not detected in season-long grazing 
systems, but weasel was only detected in season-long grazing systems. 

Detection. – The average (± SE) probability of detecting a mesocarnivore at the study area was 
0.298 ± 0.028. The top model describing mesocarnivore detection probability, with full support 
(AICc wi = 0.71), included the main effects of year, cattle presence, visit, Julian day, and total 
precipitation (Table 33). Detection probability was higher in 2016 than 2017, higher when cattle 
were present at a site, and lowest during visit 5 compared to visits 1 – 4 (Table 34). The 
probability of detection increased with Julian day, and showed a quadratic relationship with 
precipitation, where detection was lowest when precipitation during the visit was moderate (15 – 
25 cm; Table 34). 
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Table 33. Support for candidate models predicting observation-level effects on mesopredator detection probability and 
habitat-level effects on mesopredator occupancy in eastern Montana during 2016-17. Effects on detection probability 
include year, cattle presence, visit, Julian day, and precipitation. Effects on occupancy at the habitat-level include cattle 
presence, edge density (100-m and 1,000-m scales), and distance to the nearest road, fence, water, and oil pad. The number 
of parameters (K), AICc values, ΔAICc values, model weights (wi), and cumulative model weights (Cum wi) are reported. 
Model K AICc ΔAICc wi Cum wi 

Detection      
Precipitation2 + Date + Cattle + Year + Visit  11 734.48 0.00 0.71 0.71 
Precipitation2 + Date + Cattle + Year 7 737.74 3.26 0.14 0.85 
Precipitation2 + Date + Cattle 6 738.83 4.35 0.08 0.94 
Precipitation2 + Date 5 740.45 5.98 0.04 0.97 
Precipitation2 4 740.95 6.47 0.03 1.00 
Null Model 2 754.55 20.08 0.00 1.00 
      
Occupancy, habitat-level      
Edge Density (100-m) + Road + Fence + Water 15 713.35 0.00 0.28 0.28 
Edge Density (100-m) + Road + Fence + Water + Edge Density (1,000-m) 16 713.39 0.05 0.28 0.56 
Edge Density (100-m) + Road + Fence 14 713.62 0.27 0.25 0.81 
Edge Density (100-m) + Road + Fence + Water + Edge Density (1,000-m) + Oil 17 714.93 1.58 0.13 0.94 
Edge Density (100-m) + Road + Fence + Water + Edge Density (1,000-m) + Oil + Cattle 18 716.71 3.36 0.05 0.99 
Null Model 11 734.48 21.13 0.00 1.00 
2 Variable indicates support for a quadratic effect.  
ln(variable) indicates support for a pseudo-threshold effect. 
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Table 34. Standardized covariate estimates for  
the top mesocarnivorea models in eastern  
Montana during 2016–17. 

 Estimates  

 β SE  

Detection probability    

Intercept -0.76 0.30  

Year, 2017 -0.46 0.25  

Cattle presence, Yes -0.49 0.25  

Visit 2 -0.43 0.29  

Visit 3 -0.25 0.31  

Visit 4 0.26 0.31  

Visit 5 -1.11 0.52  

Julian day 0.22 0.14  

Precipitation -0.99 0.22  

Precipitation2 0.37 0.10  

Occupancy, habitat    

Intercept 4.02 1.70  

Edge density (100 m) 3.66 2.05  

Distance to road 2.89 1.16  

Distance to fence -1.92 0.64  

Distance to water 0.58 0.42  

Occupancy, management    

Intercept 4.06 2.24  
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Season-long Grazing -3.54 2.49  

Summer-rotation Grazing -3.44 2.10  

Stocking Rate 1.64 1.10  

2 Variable indicates support for a quadratic effect. 
a Mesocarnivore models include detections of  

American badger, coyote, raccoon, striped skunk,  

and weasel. 

 
Habitat conditions.  – After accounting for detection probability, four models shared support 
(ΔAICc ≤ 2.0) for habitat effects on mesocarnivore occupancy (Appendix H, Table H1). Models 
including the main effects of edge density (100-m), distance to the nearest fence, and distance to 
the nearest road had the majority of support (wi = 0.99). The top habitat-level model describing 
occupancy of mesocarnivores included support for edge density (100-m), and distance to nearest 
road, fence, and water (Appendix H, Table H1). The probability of mesocarnivore occupancy 
increased with edge density (100-m; β = 3.66 ± 2.05) and distance to nearest road (β = 2.89 ± 
1.16), and decreased sharply with distance to nearest fence (β = -1.92 ± 0.64; Figure 17). 
Distance to nearest water was also included in the top model, but the 95% CI for effect size 
overlapped 0 and the effect was considered non-informative. 
Management-level 
Five models shared support (ΔAICc ≤ 2.0) for management-level effects on mesocarnivore 
occupancy (Appendix H, Table H2). Models including the main effects of grazing system, 
stocking rate, or rangeland production potential had the majority of support (wi = 0.67). The top 
model included the main effects of grazing system and stocking rate (wi = 0.24), the next top 
model included the main effect of rangeland production potential (wi = 0.13), and the third 
supported model included the main effect of grazing system (wi = 0.11). Mesocarnivore 
occupancy was highest in rest-rotation grazing systems, followed by season-long (β = -3.54 ± 
2.49) and summer-rotation systems (β = -3.44 ± 2.10), and the probability of mesocarnivore 
occupancy increased with stocking rate (β = 1.64 ± 1.10; Table 33, Figure 18). 
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Figure 17. The top habitat model describing local occupancy of mesocarnivores in eastern Montana during 2016–17 
included support for edge density (100-m), distance to nearest fence, and distance to nearest road. Distance to nearest 
water was also included in the top model, but the 95% CI for effect size overlapped 0 and the effect was considered 
non-informative. 

 
 



 
Figure 18. The top management-level model describing local occupancy of mesopredators in 
eastern Montana during 2016–17 included main effects of grazing system and stocking rate. 
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Objective 4. Evaluate genetic diversity and pair-wise relatedness of female sharp-tailed 
grouse 
Methods and Results 
Loci and Genotyping. – Across 189 samples, we tested 24 microsatellite loci and one sexing 
locus (1237). Twelve loci were retained for complete genotyping of all samples 
(STGR_Primers_Cross.xlsx; top). Twelve loci were eliminated due to amplification and/or 
genotyping issues (STGR_Primers_Cross.xlsx; bottom). 
Probability of Identity. – We quantified the power of our microsatellite locus panel to discern 
individuals using probability identity (P(ID); Evett and Weir 1998): the probability that two 
individuals drawn at random from the population could have the same genotype across all loci. 
We also calculated probability identity for siblings (P(ID)sib): the probability that two siblings 
drawn at random from the population could have the same genotype across all loci. The 12 
retained loci retained provided more than adequate cumulative power to discern amongst 
individuals and siblings (P(ID) = 3.61 x 10-18;  P(ID)sib = 1.77 x 10-6). 
Removal of Duplicate Samples. – Following genotyping, we identified and removed duplicate 
samples verified by genotyping (multiple captures of individuals 744, 1232, and 1331), resulting 
in 186 individuals genotyped. Individuals per lek ranged from 1 to 37 (median = 11, mean = 
12.67 ± 11.91). 

Genetic Diversity. – We calculated per-locus and per-lek average number of alleles (A), the 
effective number of alleles (Ae), the number of alleles with a frequency at least five percent 
(A95), the observed heterozygosity (HO), the expected heterozygosity (HE), and Wright’s 
inbreeding statistic (FIS)—a measure of the departure from Hardy-Weinberg proportions—where 
FIS = 1 - (HO/HE) such that positive values indicate a deficit of heterozygotes while negative 
values indicate a excess of heterozygotes. Per-locus number of alleles ranged from 2 to 27 per 
locus (median = 13, mean = 14 ± 7.6), Ae from 2.0 to 17.6 (median = 6.8, mean = 7.6 ± 4.1), 
A95 from 2 to 9 (median = 6.0, mean = 6.2 ± 2.0), HO from 0.47 to 0.93 (median = 0.83, mean = 
0.78 ± 0.14), HE from 0.50 to 0.94 (median = 0.85, mean = 0.83 ± 0.11), and FIS from -0.04 to 
0.43 (median = 0.036, mean = 0.059 ± 0.12). Per-lek number of alleles ranged from 1.8 to 11.7 
per locus (median = 8.0, mean = 7.3 ± 3.2), Ae from 1.8 to 7.0 (median = 5.9, mean = 5.2 ± 1.7), 
A95 from 1.8 to 6.8 (median = 5.8, mean = 5.3 ± 1.5), HO from 0.75 to 0.83 (median = 0.78, 
mean = 0.78 ± 0.03), HE from 0.38 to 0.82 (median = 0.79, mean = 0.73±  0.13), and FIS from -
1.00 to 0.06 (median = 0.036, mean = 0.059±  0.12). 

A, Ae, HO, HE, and therefore FIS, were comparable to that which has been documented within 
greater sage-grouse across the northern tier of their range by Cross et al. (2016). Positive FIS 
across all but two loci (BG16 & MS06.6) indicates a deficit of heterozygotes likely resulting 
from unaccounted for population substructure within the sample (i.e., the Wahlund effect) and 
from nonrandom mating within the sampled population. Highly positive FIS at TUD3 may 
indicate the presence of a null alleles. Per-lek FIS was largely centered around zero except for 
where few samples were collected. 

We calculated individual-based genetic diversity including proportion of heterozygous loci in an 
individual (PHt), standardized heterozygosity based on the mean expected heterozygosity 
(Coltman et al. 1999), standardized heterozygosity based on the mean observed heterozygosity 



 
 

 

(Hs_obs), internal relatedness (IR) (Amos et al. 2001), and homozygosity by locus (HL) 
(Aparicio 2006). 

Genetic Divergence. – We calculated among-individual DPS and analysis of molecular variance 
(AMOVA), and among-lek Bray-Curtis distance (a measure of genetic distance based upon the 
AMOVA distance metric found to perfectly correlate with DPS by Shirk et al. 2017). Among-
individual DPS ranged from 0 to 0.96 (median = 0.25, mean = 0.26  ±0.08). Among-individual 
AMOVA ranged from 0 to 35 (median = 21, mean = 21±  3.6). Among-lek Bray-Curtis distance 
ranged from 0 to 0.05 (median = 0.04, mean = 0.03 ± 0.01). 
 
Attached File Directory 
See below for specifics of results included in the attached compressed directory 
“STGR_GeneticResults.zip” 
Table: Per-locus genetic diversity across all samples (by_locus_gendiv_stats.csv). 
Showing number of alleles (A), effective number of alleles (Ae), the number of alleles with at 
least 5% frequency (95%), observed heterozygosity (Ho), expected heterozygosity (He), Wright’s 
inbreeding statistic (FIS = 1 - HO/HE). 
Table: Lek-based genetic diversity across all samples (by_lek_gendiv_stats.csv). 
Showing number of alleles (A), effective number of alleles (Ae), the number of alleles with at 
least 5% frequency (95%), observed heterozygosity (Ho), expected heterozygosity (He), Wright’s 
inbreeding statistic (FIS = 1 - HO/HE). 
Table: Individual-based genetic diversity (by_indiv_gendiv.csv) 
Including (1) proportion of heterozygous loci (PHt) in an individual: PHt = number of 
heterozygous loci / number of genotyped loci, (2) standardized heterozygosity based on the mean 
expected heterozygosity (Hs_exp, Coltman et al. 1999): Hs_exp = PHt / mean expected 
heterozygosity of typed loci, (3) standardized heterozygosity based on the mean observed 
heterozygosity (Hs_obs): Hs_obs = PHt / mean observed heterozygosity of typed loci, (4) 
internal relatedness (IR) (Amos et al. 2001): IR = (2H–fi)/(2N–fi), where H is the number of loci 
that are homozygous, N is the number of loci and fi is the frequency of the ith allele contained in 
the genotype, (5) homozygosity by locus (HL) (Aparicio 2006): HL = Eh/(Eh+Ej), where Eh and 
Ej are the expected heterozygosities of the loci that an individual bears in homozygosis (h) and in 
heterozygosis (j), respectively. 
Table: Proportion of shared alleles by individual (by_indiv_dps.csv) 
Matrix format where rows and columns are individuals and values reflecting pairwise proportion 
of shared alleles are mirrored on either side of the diagonal. 
Table: Analysis of molecular variance (by_indiv_amova.csv) 
Matrix format where rows and columns are individuals and values reflecting pairwise 
differentiation are mirrored on either side of the diagonal. 
Table: Bray-Curtis dissimilarity by lek (by_lek_Bray.csv) 
Matrix format where rows and columns are leks and values reflecting pairwise differentiation are 
mirrored on either side of the diagonal. 
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