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ABSTRACT. Dusky Grouse (Dendragapus obscurus) are an under-monitored game species in Montana and elsewhere across their
distribution. Without population monitoring it is difficult to establish appropriate harvest regulations or understand the impact of
environmental disturbances (e.g., timber harvest, climate change) on populations. As a first step toward developing methods for unbiased
population monitoring, we must identify appropriate sampling sites, which requires knowledge of Dusky Grouse habitat. Our goal was
to explore relationships between Dusky Grouse use and habitat characteristics, and then generate a state-wide map predicting Dusky
Grouse habitat in Montana using two methods: resource selection functions and random forest classifiers. The Integrated Monitoring
in Bird Conservation Regions program provided a multi-year dataset of Dusky Grouse observations, which we reduced to detected
(n=132) and pseudo-absent (n=5960) locations, using geospatial datasets to obtain topographic and vegetation characteristics for each
location. We evaluated the predictability of the two models using receiver operating characteristics and area under the curve (ROC/
AUC) with k-fold cross validation and classification accuracy of an independent dataset of incidental Dusky Grouse locations. We
found both models to be highly predictive and multiple habitat characteristics were found to help predict relative probability of use
such as proportion of trees with a height of 16–20m and conifer forest vegetation types. We converted both models to binary values
and used an ensemble (frequency histogram) approach to combine the models into a final predictive map. Consensus between the
resource selection function and random forest models was high (93%) and the ensemble map had higher predictive accuracy when
classifying the independent dataset than the other two models. Our results show that our ensembled model approach was able to
accurately predict potential Dusky Grouse habitat and therefore can be used to delineate areas for future population monitoring of
Dusky Grouse in Montana.

Utilisation d’une approche par ensemble pour prédire l’habitat du Tétras sombre (Dendragapus
obscurus) dans le Montana, aux États-Unis
RÉSUMÉ. Le Tétras sombre (Dendragapus obscurus) est une espèce chassée peu surveillée dans le Montana ainsi que dans l’ensemble
de son aire de répartition. Sans suivi des populations, il est difficile d’établir des réglementations de prélèvements appropriées ou de
comprendre l’impact de perturbations environnementales (comme l’exploitation du bois d’œuvre ou le changement climatique) sur les
populations. La première étape de l’élaboration de méthodes de suivis des populations non biaisés consiste à identifier des sites
d’échantillonnage appropriés, ce qui nécessite une connaissance de l’habitat du Tétras sombre. Notre objectif  était d’explorer l’usage
de l’habitat du Tétras sombre, en fonction des caractéristiques de celui-ci, puis de générer une carte à l’échelle de l’État permettant de
prédire l’emplacement de l’habitat du Tétras sombre dans le Montana à l’aide de deux méthodes : les fonctions de sélection des ressources
[resource selection functions] et la classification par forêts aléatoires (arbres décisionnels). Le programme de Surveillance intégrée dans
les Régions de conservation des oiseaux [Bird Conservation Region] a fourni un jeu de données d’observation du Tétras sombre sur
plusieurs années, que nous avons réduit en tant que points de présence (n=132) et de pseudo-absence (n=5960). En utilisant des données
géospatiales, nous avons pu obtenir les caractéristiques topographiques et de végétation pour chaque emplacement. Nous avons évalué
la capacité prédictive des deux modèles en utilisant la fonction d’efficacité du récepteur aussi appelée courbe ROC [Receiver Operating
Characteristics] et la surface sous la courbe [Area Under the Curve] (ROC/AUC) avec la méthode de la validation croisée k-fold et
l’évaluation de l’exactitude de la classification sur un jeu de données indépendant de localisations opportunistes du Tétras sombre.
Nous avons constaté que les deux modèles étaient hautement prédictifs et que plusieurs caractéristiques de l’habitat contribuaient à
prédire la probabilité relative d’utilisation, telles que la proportion d’arbres d’une hauteur de 16 à 20 m et la végétation de type forêt
de conifères. Nous avons converti les deux modèles en valeurs binaires et utilisé une approche par ensemble (histogramme de fréquence)
pour combiner les modèles en une carte prédictive finale. La concordance entre les modèles de fonction de sélection des ressources et
de classification par forêts aléatoires était élevée (93 %) et la carte ensembliste avait une précision prédictive plus élevée que les deux
autres modèles lors de la classification du jeu de données indépendant. Nos résultats montrent que notre approche par ensembles
multimodèles a été capable de prédire avec précision l’habitat potentiel du Tétras sombre et peut donc être utilisée pour délimiter les
zones de surveillance future de la population de Tétras sombres dans le Montana.
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INTRODUCTION
Dusky Grouse (Dendragapus obscurus) are an under-monitored
galliform found in the interior mountain ranges of western North
America (Aldrich 1963, Zwickel and Bendell 2004). Unlike other
upland gamebird species, standardized survey protocols have not
yet been developed for Dusky Grouse. Although presumed to
occupy most of their historical distribution (Zwickel and Bendell
2004), the lack of basic information on population status, current
distributions, and regional habitat associations hinders effective
population management, the ability of managers to know if
populations are declining, and to set appropriate harvest
regulations. Further necessitating the development of targeted
and robust population and habitat monitoring protocols,
increasing environmental stressors (e.g., wildfire, exurban
development, timber harvests, beetle kill, climate change) are
occurring in Dusky Grouse habitats (Martinka 1972, Redfield
1973, Chan-McLeod and Bunnell 2003, Youtz et al. 2022).  

Accurate species distribution models (SDMs) provide
information on distribution and habitat associations that are
useful for conservation and management. Species distribution
models can be used to direct survey locations toward potential
habitat thus increasing the likelihood of species detection, assist
with determining conservation status, delineate areas for
conservation, and help predict a species response to management
actions or climate change (Guisan et al. 2006, Sofaer et al. 2019).
Recently the number of techniques available for creating species
distribution models has grown, and now includes more classic
techniques such as resource selection functions (RSFs), as well as
newer machine learning methods (Elith and Graham 2009,
Grenouillet et al. 2011, Shoemaker et al. 2018, Picardi et al. 2020).
Each approach has its own limitations, and no one method is
universally best for all applications (Araùjo and New 2007, Elith
and Graham 2009). Unfortunately, the subjective choice of
modeling technique can influence the predictions of species
habitat (Araùjo and New 2007, Pearson et al. 2006). Because
conservation planning is increasingly reliant upon SDMs (Guisan
and Thuiller 2005, Guisan et al. 2013), it is imperative that
predictions of species distribution are accurate. Recent research
has highlighted the benefits of ensemble modeling, where
predictions of species distributions are produced with several
statistical techniques, which can improve accuracy and reduce
uncertainty in SDM predictions (Araújo et al. 2005, Marmion et
al. 2009, Grenouillet et al. 2011). In addition, consensus within
the suite of models on predicted habitat may increase certainty
in the model’s accuracy, while variation in predictions across
models may serve as an index of uncertainty in species distribution
(Latif  et al. 2013).  

We used an ensemble modeling approach to understand habitat
associations and predict the distribution of Dusky Grouse in
Montana, USA. Our specific objectives were to (1) explore
relationships between Dusky Grouse presence and landscape-
level habitat characteristics, (2) generate and test the accuracy of
predictions of Dusky Grouse habitat using resource selection
functions and randomized classification trees (e.g., Random
Forest), and (3) compare the performance of an ensemble model
to our individual species distribution models. Our goal is to
provide an accurate state-wide prediction of Dusky Grouse
habitat that can be used to guide monitoring efforts by being able
to predict appropriate population survey sites at scales relevant
to management.

METHODS

Study area
Our study area included the entire state of Montana, USA, which
consists of 7 Montana Department of Fish, Wildlife & Parks
(MFWP) administrative regions (Fig. 1). Dominant vegetation
types in western Montana (Regions 1–3) are mainly conifer
forests, intermixed with shrublands and intermountain foothills
grasslands (LANDFIRE 2016a). Eastern Montana (Regions 6–
7) are dominated by grasslands, shrublands, and cultivated lands,
and Dusky Grouse habitat is thought to be less abundant and
more isolated (LANDFIRE 2016a). Central Montana (Regions
4–5) transitions from vegetation types found in western Montana
to those found in eastern Mountain and is dominated by both
mountainous and coniferous forests in the west and grasslands,
shrublands, and cultivated lands toward the east (LANDFIRE
2016a). Elevation varies from 550 to 3897 m, with lower elevations
in the east and higher elevations in the mountainous areas in the
west (U.S. Geological Survey 2017).

 Fig. 1. Map of study area with Integrated Monitoring in Bird
Conservation Regions (IMBCR) survey sites (n = 6092) and
Montana Department of Fish, Wildlife & Parks (MFWP)
incidental observations of Dusky Grouse (Dendragapus
obscurus; n = 194). At the IMBCR sites, 132 were classified as
used (Dusky Grouse detected) and 5,960 as pseudo absent
(Dusky Grouse not detected). MFWP divides Montana into
seven administrative regions for conservation and management.
FWP regions are outlined in gray and labeled by region number
(regions 1–3 on the left, 4–5 in the center, and 6–7 on the right).
 

Grouse observations
We used two independent datasets of Dusky Grouse observations:
a dataset with used and pseudo-absent locations for training and
testing our models, and an independent dataset with presence-
only locations for additional validation tests. For training our
SDMs, we obtained Dusky Grouse observation data from the
IMBCR program administrated by the Bird Conservancy of the
Rockies. IMBCR survey sites occur over much of the mid-western
and western parts of the United States, with the surveyed land
broken up into different strata that are based on land ownership
and topographic features (Pavlacky et al. 2017, Woiderski et al.
2018). A grid of 1-km² cells is generated for each stratum, with
16 survey points evenly spaced every 250 m within each cell
(Woiderski et al. 2018). Each spring during May–July, a spatially

http://www.ace-eco.org/vol19/iss2/art7/


Avian Conservation and Ecology 19(2): 7
http://www.ace-eco.org/vol19/iss2/art7/

balanced sampling algorithm called generalized random-
tessellation stratification (GRTS), is used to randomly select a
minimum of 2 sample units (cells) within each stratum, within
which observers conduct 6-minute point-counts at each of the 16
sites (Woiderski et al. 2018). We obtained observation data from
spring (May–June) surveys conducted during 2009–2020 for a
total of 25,654 surveys conducted across 6092 sites in Montana.
Surveys occurred at similar dates across all MFWP Regions
reducing the potential for temporal differences in probability of
detecting a Dusky Grouse to bias pseudo-absence. Dusky Grouse
were detected (observed ≥ 1 time) at 132 sites and not detected at
5960 sites (Table 1; Fig. 1). Because the detection of Dusky Grouse
is imperfect (Leipold 2023), the observation data fit a standard
used vs available sampling design (Design 1, sampling protocol
A) rather than a used vs unused sampling design (Manly et al.
2002). We defined our pseudo-absent locations using a common
strategy for species distribution modeling where pseudo-absent
locations are defined as surveyed sites where the target species
was not detected (Lütolf  et al. 2006, Hanberry et al. 2012). We
included all IMBCR sites within Montana in our analysis; both
used and available points are considered at the statewide
population level as per Design 1 of Manly et al. (2002), which is
analogous to Johnson’s (1980) first order of selection.

 Table 1. Summary of location data. For the Integrated
Monitoring in Bird Conservation Regions (IMBCR) dataset, the
number of used and pseudo-absent points in total and per
Montana Department of Fish, Wildlife & Parks (MFWP) region.
For the MFWP incidental data, the number of Dusky Grouse
(Dendragapus obscurus; DUGR) observations in total and per
MFWP region. NAs are the result of points being located either
just outside or on the border of Montana.
 
Region IMBCR MFWP

Used Pseudo-absent DUGR

Region 1 41 893 26
Region 2 50 494 22
Region 3 30 815 86
Region 4 11 832 12
Region 5 0 452 47
Region 6 0 1241 0
Region 7 0 1171 0
NA 0 62 1
Total 132 5960 194

MFWP field staff  recorded the geographic locations of incidental
Dusky Grouse observations observed during unrelated field
activities conducted in the springs (April–June) of 2017–2021.
During the 4-year period, 194 Dusky Grouse locations were
recorded (Fig. 1), which we used as an independent dataset to
further evaluate the predictive accuracy of our models.

Environmental predictors
Dusky Grouse make repeated softer hoots that are difficult to
detect at distances greater than 100 m, but wing flutters, wing
claps, and the louder single hoot can be heard up to 250 m (Harju
1974; personal observation). We examined the estimated distances
to individuals recorded in the IMBCR data, and 95% of all Dusky
Grouse observed were estimated to be within 250 m of the IMBCR
point-count location. We calculated the mean statistic or
proportion of a habitat characteristic within the 250-m radii circle

centered on the survey point using geospatial modeling
environment (GME), remotely sensed geospatial datasets, and the
spatial analyst tools in ArcGIS Pro (Environmental Systems
Research Institute, Redlands, CA; Appendix 1; Beyer 2015).
Because Dusky Grouse tend to be found at higher elevations, may
prefer east to south-facing slopes, and brood-rearing females have
been found to prefer more moderate slopes, we extracted average
elevation, slope, and proportions of different facing (N, NE, E,
etc.) aspects from a digital elevation model (Stauffer and Peterson
1986, U.S. Geological Survey 2017, Farnsworth 2020). In
addition, we calculated the mean distance to the nearest stream
and to the nearest road using spatial analyst tools from ArcGIS
pro (Environmental Systems Research Institute, Redlands, CA)
and road and stream geospatial data layers (Montana Spatial
Data Infrastructure 2017, 2018). Because the attribute data for
the geospatial road layer was incomplete, we necessarily grouped
unimproved and paved roads together including highways,
secondary roads, and forest service roads with and without
seasonal closures. We used the LANDFIRE geospatial data with
a 30 × 30 m spatial resolution to describe existing vegetation type
(EVT), which is the type of plant community present, projected
canopy cover in 1% increments (EVC) for the vegetation type for
that pixel, and average height of the dominant vegetation given
in 1-m increments (EVH; LANDFIRE 2016a, b, c, 2019, 2020).
Both EVC and EVH data are treated as categorical variables by
LANDFIRE. We condensed the 1% increments for the canopy
vegetation to 10% increments for each category of vegetation type
(i.e., tree, shrub, herbaceous) and the 1-m increments for tree
height to 5-m increments, and the 0.1-m increments for shrub and
herbaceous heights to 0.5-m increments to reduce the number of
variables evaluated. For both EVC and EVH data, there were also
several categories of developed habitat or barren habitat that did
not have cover percentages or heights that were grouped into two
categories: developed and sparse vegetation. In addition, we
created a conifer forest layer based on the descriptions for the
different LANDFIRE vegetation types. We used this layer to
calculate the average distance to the edge of the conifer forest
from within the forest and outside of the forest (Appendices 1, 2;
LANDFIRE 2016a). We removed variables from consideration
if  they occurred at less than 1% of the survey sites or showed no
relationship with use by Dusky Grouse, resulting in 90
environmental predictor variables (Appendix 1).

Habitat associations and ensemble of
predictions
Resource selection functions
We fit RSFs using general linear mixed models (GLMMs) with
a logit link function, binomial error distribution, and the
“bobyqa” optimizer with a maximum of 100,000 iterations for
approximating beta coefficients using the “lme4” package in
program R (Bates et al. 2015, R Core Team 2017). Our GLMMs
included the binomial response variable of whether a Dusky
Grouse was detected (1) or not detected (0) at each site,
combinations of environmental predictors, and a random
intercept for unique IMBCR transects to account for potential
spatial autocorrelation in the observation data because of the
survey points being grouped along IMBCR survey routes (Zurr
2009, Woiderski et al. 2018).  
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Prior to model fitting, we explored possible non-linear responses
of Dusky Grouse to habitat variables using univariate generalized
additive models (GAMs) and linear equations hypothesized to
represent the linear and nonlinear forms such as a quadratic form
[x + x²] and pseudolinear threshold (ln[x + 0.001]; Franklin et al.
2000, Guisan and Zimmerman 2000, Guisan et al. 2002, Dugger
et al. 2005, McNew et al. 2015). We performed the preliminary
screenings of the three functional responses using univariate
models built using GLMMs with a logit link function and
binomial error distribution, evaluating the model support using
Akaike’s Information Criterion for small sample size (AICc;
Burnham and Anderson 2002). After preliminary screenings of
the functional responses, we assessed multicollinearity in the
remaining habitat predictor variables for all possible pairings
using Spearman-rank correlations. We considered variables to be
correlated when |r| > 0.7. If  variables were correlated, we first used
knowledge of general Dusky Grouse habitat to evaluate which
variable was more biologically relevant to Dusky Grouse. If  no
previous information about the habitat characteristic was
available, using the univariate models with the best performing
functional response for the correlated variables we evaluated
model support using AICc, and whichever correlated variable was
least supported was removed from our analysis (Burnham and
Anderson 2002, Aldridge et al. 2012). If  a variable was correlated
with more than one variable, we evaluated correlations based
upon most correlated to least, removing variables until only one
uncorrelated variable remained in the dataset. After assessing for
correlation, we had 66 remaining variables.  

We first evaluated predictors in groups based on variable type:
aspect, other non-vegetation variables (i.e., slope, elevation,
distance to variables), conifer vegetation type (divided into two
groups that were later combined because of model convergence
issues), hardwood vegetation type, grassland vegetation type,
shrubland vegetation type, riparian vegetation type, other
vegetation type, tree canopy cover, shrub canopy cover,
herbaceous vegetation cover (also divided into multiple groups
that were later combined because of model convergence issues),
other vegetation canopy cover, and vegetation height. Within each
group, we used backwards elimination to determine the top
performing variables for inclusion in the final candidate model
set, with variable removal based on the p-value calculated using
the “lme4” package in program R from asymptotic Wald tests,
where the variable with the highest p-value > 0.05 was removed
(Hosmer et al. 2013, Bates et al. 2015, Heinze et al. 2018).
Backwards selection continued until all variables within the model
had p-values < 0.05 (Heinze et al. 2018). The top performing
variables from each group were then added to a global model and
again evaluated using backwards elimination to determine a final
set of variables for predicting Dusky Grouse habitat. We
calculated the 95% confidence intervals for the beta coefficients
using the Wald method, which estimates the fixed-effects
confidence intervals, using the “lme4” package in program R
(Bates et al. 2015, R Core Team 2017). We used the high and low
confidence intervals to create two additional maps to examine
uncertainty in the predictions (Appendix 3).

Random forest
We developed random forest (RF) models by creating a large
number of classification trees where majority voting was used to
decide on the classification result (Breiman 2001) using the train 
and trainControl functions and the “rf” model from the “caret”

package in R (Kuhn 2008, R Core Team 2017). The machine
learning algorithm trained each randomized classification tree on
a bootstrap sample of the training data where for each split a
random selection of the total predictors were chosen and the best
predictor of those chosen was used to partition the data (Evans
et al. 2011, Kuhn and Johnson 2013). Random forest models are
sensitive to unbalanced datasets, such as our IMBCR dataset
where the number of pseudo-absent locations greatly
outnumbered the used locations (Evans and Cushman 2009,
Kuhn and Johnson 2013, Kuhn 2019). To account for our dataset
being unbalanced, we used the down-sampling function within
the caret package to rarify the random sampling data to a 1:1
ratio with the used locations (Evans et al. 2011, Kuhn and Johnson
2013, Kuhn 2019). We tuned our model by varying the number
of trees and the number of variables to possibly split at each node
(Kuhn 2008, Kuhn and Johnson 2013, R Core Team 2017). The
number of variables to possibly split at each node, “mtry,” was
tested with the square root of the number of predictors, the square
root of the number of predictors divided by 2, and the square
root of the number of predictors times 2 (Breiman 2001, Kuhn
and Johnson 2013). The number of trees tested were 300, 500,
800, 1000, and 2000. After we tuned the model, we trained it with
repeated cross validation, with 5 folds and 500 repeated k-fold
cross validation iterations. We generated variable importance
using the “randomForest” package, which calculates the impact
of removing a variable on the model or mean decrease in accuracy
(Liaw and Wiener 2002, R Core Team 2017).

Predictions of Dusky Grouse habitat
We developed separate statewide predictions of relative use from
each model. We used a 250-m moving window to create spatial
layers for each variable upon which to predict our models. We
first used slope coefficients from our top GLMM to fit an RSF
(Manly et al. 2002). Second, to evaluate Dusky Grouse occurrence
across Montana using the random forest model, we used the
predict function in R with our 250-m circular moving window
layers to construct a predictive map of potential Dusky Grouse
habitat (Kuhn 2008, R Core Team 2017). We then rescaled RSF
and random forest predictive maps of potential Dusky Grouse
habitat in Montana to be between 0 and 1.

Model evaluation
We evaluated the performance of our models in two ways: (1)
repeated k-fold cross validation with 5 folds where 80% of the
IMBCR data used to train the model and 20% used to test the
model, and (2) with an independent dataset. We conducted a
simulation with 500 iterations (externally for the RSF and within
the model fitting process for the RF) where we used k-fold cross
validation and threshold-independent ROC/Area Under Curve
(AUC) to evaluate mean model performance with the IMBCR
training dataset (Zweig and Campbell 1993, Fielding and Bell
1997). We calculated the average AUC value with a 95%
confidence interval. An AUC greater than 0.7 indicates that the
model has acceptable predictive power and that the performance
is better than that of pure chance (Fielding and Bell 1997, Boyce
et al. 2002, Hosmer et al. 2013, Bohnett et al. 2020).  

In addition, we tested model predictions using an independent
dataset of incidental grouse observations collected by MFWP and
comparing it with the presence locations from the IMBCR
dataset. For each MFWP and IMBCR Dusky Grouse
observation, we calculated the RSF value and the RF value. For
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each model type (RSF, RF), we used the IMBCR dataset to
categorize the values into 5 quantile bins of equal size (20% of
the data in each bin) that represented increasing relative
probability of a point being classified as a site used by Dusky
Grouse (Boyce et al. 2002, Johnson et al. 2006, McNew et al.
2013). The bins represented low (lowest 20% of raw RSF values),
medium-low (20–40%), medium (40–60%), medium-high (60–
80%), and high (highest 20%) probability of relative use. We then
regressed the observed proportion of grouse locations from the
MFWP or test dataset in each quantile bin with the observed
proportions of grouse locations in each quantile bin from the
IMBCR or training dataset. We used linear regression to compare
the training and testing datasets, and we considered a good model
fit to have a high R² value, a slope close to 1, and an intercept
close to 0 (Johnson et al. 2006, McNew et al. 2013).

Calculating potential Dusky Grouse habitat in
Montana
We used the quantile bin that correctly predicted 75% of the used
points in the training and test datasets as our threshold for
delineating habitat and created a binary map of habitat and non-
habitat for each model. To evaluate the accuracy of the threshold,
we conducted a simulation with 500 iterations, where we
calculated the average percent of correctly predicted locations
with a 95% confidence interval for a subset (80%) of the MFWP
dataset. We conducted this simulation for the state-wide MFWP
data and for each MFWP region. Because predictive accuracies
of both models were similar (see Results) we added the binary
maps of our two individual models to obtain a final map created
from the ensembled prediction of potential habitat of Dusky
Grouse in Montana (a frequency histogram approach; Araùjo
and New 2007, Le Lay et al. 2010, Stohlgren et al. 2010). The
ensemble map displayed values ranging from 0 to 2, where the
pixel value was related to the number of models that predicted it
to be habitat. A value of 2 indicates that both models predicted
that pixel to be habitat, while a value of 1 indicates that only one
model predicted that area to be habitat and a value of 0 indicates
that both models predicted the area to not be habitat. We
considered areas with a value of 2 to be high probability of being
habitat (consistently predicted to be habitat) and areas with a
value of 1 to be medium-high probability of being habitat
(inconsistently predicted to be habitat).  

We calculated the amount of area within each MFWP
administrative region and Montana that was predicted to be
medium-high and high probability of being habitat. We calculated
the amount of Dusky Grouse habitat in each category by
summing the number of pixels predicted to be within the
categories and multiplying by pixel size (0.0009 km²). The amount
of Dusky Grouse habitat in Montana and within each MFWP
administrative region was calculated as ranging between the high
probability of being habitat category and total potential habitat
(the sum of both the medium-high and high probability of being
habitat categories).

RESULTS

Location data
The majority (69%) of the used locations for the IMBCR dataset
were in MFWP Regions 1 and 2, while the majority of the presence
locations for the MFWP dataset were in Regions 3 (44%) and 5

 Fig. 2. Total number of used (Dusky Grouse, Dendragapus
obscurus, detected) locations for the training (Integrated
Monitoring in Bird Conservation Regions) and the testing
(Montana Department of Fish, Wildlife & Parks) datasets for
each MFWP region. No used locations were observed in
Regions 6 and 7 for either dataset.
 

(24%; Fig. 2). Of the regions with presence locations, the fewest
presence locations for both datasets were in MFWP Region 4
(Fig. 2). There were no used points in the IMBCR dataset in
Regions 5, 6, 7 (Fig. 2).

Dusky Grouse habitat associations
From the RSF model we found 7 habitat predictors to affect
Dusky Grouse occurrence (Table 2). Two variables had a
quadratic relationship with relative probability of use: average
distance to nearest stream (β = 7.40 ± 2.11SE, β = -7.49 ± -2.70)
and proportion of northern rocky mountain foothill conifer
wooded steppe (β = 216.70 ± 32.83, β = -5557.00 ± 137.60; Table
3, Fig. 3). Average slope had a positive linear relationship with
relative probability of use (β = 1.03 ± SE 0.26). Proportion of
inter-mountain basins montane sagebrush steppe (β = 0.16 ± SE
0.06), and the proportion of trees with a height of 16–20 m (β =
0.32 ± SE 0.08) had positive pseudolinear threshold relationships
with relative probability of use by Dusky Grouse and the
proportion of trees with a height of 1–5 m (β = -0.63 ± SE 0.24)
and distance to road (β = -0.31 ± 0.14) had negative pseudolinear
threshold relationships with relative probability of use (Table 3,
Fig. 3). Conditional and marginal R² values for this model were
0.69 and 0.66, respectively, indicating that most of the variation
in the response data from our model is described by the fixed
effects, with only an additional 3% associated with our points
being clustered along IMBCR survey routes.  

We also examined the variables of importance from the Random
Forest model, and the top 10 in decreasing order from most
important to least important were: proportion of trees with a
height of 16–20 m, average slope, average elevation, proportion
of Douglas fir (Pseudotsuga menziesii) forest and woodland,
proportion of trees with a height of 21–25 m, proportion of
montane-foothill deciduous shrubland, proportion of montane
mixed conifer forest, proportion of area with 30–39% shrub
canopy cover, proportion of trees with a height of 1–5 m, and
proportion of area with big sagebrush steppe (Fig. 4). We
evaluated the marginal effect of a variable on the random forest’s
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 Table 2. Definitions for variables in the final resource selection function habitat model for predicting Dusky Grouse (Dendragapus
obscurus) occurrence. We calculated the mean statistic or proportion of a habitat characteristic within a 250-m radii circle centered on
the survey point. Relationship form represents the marginal relationship between a variable and probability of occurrence and is
evaluated using a univariate model examining potential linear, quadratic, and pseudo-linear threshold relationships using linear
equations.
 
Variable EVT code Definition Vegetation

Physiognomy
Relationship

Form
Direction

Distance to Road N/A Average distance to nearest road (km) N/A linear negative
Slope N/A Average slope N/A nonlinear: pseudo-linear

threshold
positive

Distance to stream N/A Average distance to nearest stream (km) N/A nonlinear: quadratic positive, 
then negative

Foothill Conifer
Wooded Steppe

EVT 7165 Proportion of northern rocky mountain foothill
conifer wooded steppe

Conifer nonlinear: quadratic positive, 
then negative

Montane Sagebrush
Steppe

EVT 7126 Proportion of inter-mountain basins montane
sagebrush steppe

Shrubland nonlinear: pseudo-linear
threshold

positive

Tree Height 1–5m N/A Proportion of trees with a height of 1–5m N/A nonlinear: pseudo-linear
threshold

negative

Tree Height 16–20m N/A Proportion of trees with a height of 16–20m N/A nonlinear: pseudo-linear
threshold

positive

 Table 3. Slope estimates for all terms in the final resource selection
function habitat model for predicting Dusky Grouse
(Dendragapus obscurus) occurrence with 95% confidence
intervals.
 
Variable Estimated slope

(β
i
)

Lower 95%
CI

Upper 95%
CI

Distance to Road -0.31 -0.58 -0.03
Distance to Stream 7.40 3.26 11.53
Distance to Stream2 -7.49 -12.79 -2.19
Foothill Conifer Wooded
Steppe

216.70 152.32 281.03

Foothill Conifer Wooded
Steppe2

-5557.00 -5826.86 -5287.36

ln(Slope + 0.001) 1.03 0.52 1.54
ln(Montane Sagebrush Steppe
+ 0.001)

0.16 0.05 0.27

ln(Tree Height 1–5m + 0.001) -0.68 -1.14 -0.22
ln(Tree Height 16–20m +
0.001)

0.32 0.15 0.48

predictions using partial dependency plots. Proportion of trees
with a height of 16–20 m, slope, elevation, proportion of Douglas
fir forest and woodland, proportion of trees with a height of 21–
25m, proportion of montane-foothill deciduous shrubland,
proportion of montane mixed conifer forest, proportion of 30–
39% canopy shrub cover, and proportion of big sagebrush steppe
all have positive nonlinear relationships, while proportion of trees
with a height of 1–5 m and proportion of 30–39% canopy herb
cover have negative nonlinear relationships (Fig. 5).

Model evaluation
The average AUC values for the RSF and RF models were 0.89
(95% CI: 0.85–0.93) and 0.87 (95% CI: 0.83–0.92), respectively
(Fig. 6). The RSF model correctly classified 150/193 (78%) of the
independent grouse locations into the medium-high and high
categories of relative probability of use. Linear regression
produced an intercept close to zero (95% CI: -0.40–0.18), a slope

of 1.55 (95% CI: 0.45, 2.65), and a high R² value (0.87), indicating
high predictive accuracy (Fig. 5). The RF model also had high
predictive accuracy, with 94% of the independently detected
Dusky Grouse locations correctly classified into the medium-high
and high category bins of relative probability of use. Linear
regression produced an intercept close to zero (95% CI: -0.30,
0.23), a slope of 1.17 (95% CI: 0.30, 2.06), and a R² value of 0.86
(Fig. 7).  

Because both models had similarly high predictive accuracy, we
used the 60–80% quantile bin (medium-high relative probability
of use) as a threshold to create two binary maps to obtain
ensembled estimates of spatially-explicit habitat suitability for
Dusky Grouse in Montana. The percent of locations correctly
classified as habitat from the MFWP data was highest in Region
1 for the RSF model, in Regions 1, 2, and 4 for the RF model and
ensemble predictions, and was lowest in Region 5 for all three
predictions (Table 4).

Calculating potential Dusky Grouse habitat in
Montana
Slight differences existed in the predicted habitat between the RSF
and RF models, with the RSF model having more conservative
estimates and the RF model predicting higher amounts of habitat
across the majority of the regions (exception is MFWP Region
3; Table 5, Fig. 8). Despite the slight differences in the amounts
of predicted habitat (a 7% difference in total habitat and non-
habitat predicted), there was a high amount of agreement (93%)
between the RSF and RF models on whether an area was
predicted habitat or non-habitat. Across both models, MFWP
Regions 1, 2, and 3 had the highest amounts of potential Dusky
Grouse habitat (Table 5, Fig. 8). Using our ensembled map we
predicted 83,160–109,125 km² in Montana to be potential Dusky
Grouse habitat (Table 5) with the majority (99%) of the habitat
occurring in MFWP regions 1–5 (Fig. 8). Of the predicted habitat
for the ensembled map, 76% was predicted to be high probability
of being habitat and 24% was predicted to be medium-high
probability of being habitat (Table 5, Fig. 8).
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 Fig. 3. Predicted relative probability of use for
covariates in the resource selection function (RSF)
model with 95% confidence intervals (dashed lines)
while all other covariates are held at their average
value.
 

 Fig. 4. Variable importance plot for the top 10 important
variables from the random forest model. Variable importance
was calculated as the impact of removing a variable on the
model or mean decrease in accuracy.
 

 Fig. 5. Partial dependency plots for the variables
of greatest importance for fitting the random
forest model to evaluate the marginal effect of a
variable on the random forest’s predictions.
 

 Fig. 6. Histogram of the Area Under Curve (AUC) values from
the repeated k-fold cross validation for the resource selection
model (top) and random forest model (bottom). Average AUC
for the resource selection function model was 0.89 (95% CI:
0.85–0.93) and for the random forest model was 0.87 (95% CI:
0.82, 0.92).
 

http://www.ace-eco.org/vol19/iss2/art7/


Avian Conservation and Ecology 19(2): 7
http://www.ace-eco.org/vol19/iss2/art7/

 Table 4. Percent of simulated data correctly classified for all of Montana and each Montana Department of Fish, Wildlife & Parks
region for the independent dataset. Percent correctly classified is calculated with 95% confidence intervals for the three models: resource
selection function model (RSF), random forest model (RF), and the ensemble model.
 
Area RSF Model RF Model Ensemble Model

Percent Lower 95% CI Upper 95% CI Percent Lower 95% CI Upper 95% CI Percent Lower 95% CI Upper 95% CI

Montana 77.7 74.7 81.2 93.8 92.2 95.5 96.9 96.1 98.1
Region 1 96.2 95.0 100 100 100 100 100 100 100
Region 2 85.6 81.3 93.8 100 100 100 100 100 100
Region 3 87.2 83.8 91.2 94.3 92.6 97.1 96.5 95.6 98.5
Region 4 83.6 77.8 100 100 100 100 100 100 100
Region 5 45.9 37.8 51.4 87.3 83.8 91.9 93.7 91.9 97.3

 Fig. 7. Proportion of Dusky Grouse (Dendragapus obscurus)
locations in five bins of increasing relative probability of use
values for resource selection function values (top) and random
forest model values (bottom) that we used to train (n = 132)
and test (n = 193; 1 location was outside Montana) the
different models of predicted Dusky Grouse habitat. A good
predictive model will assign most of the training and test
Dusky Grouse locations to medium-high or high categories of
predicted use.
 

DISCUSSION
We used IMBCR’s dataset of Dusky Grouse observations and an
ensemble modeling approach to evaluate habitat associations and
create statewide predictions of Dusky Grouse habitat in
Montana. Our RSF and RF models found somewhat different
landscape metrics to be important for predicting habitat
suitability, which resulted in slight differences in predicted habitat.
However, both models had high predictive accuracy and
predictions of potential Dusky Grouse habitat were generally
similar among methods. By using an ensemble of models, created

by summing 2 binary maps, we identified some uncertainty, that
is areas of disagreement between models, in our predictions and
created a robust prediction of habitat suitability for Dusky Grouse
that can be used to inform habitat and population management
programs in Montana.  

Agreement between our landscape-level evaluation of habitat
associations and previously reported field-based habitat
associations of Dusky Grouse supports the validity of our
predictive habitat suitability models (Johnsgard 2016). Dusky
Grouse were strongly associated with coniferous and
mountainous forests, and the coverages of forest height classes
were important predictors of relative habitat suitability during
the breeding season in both models. In addition, we found relative
habitat suitability increased with the coverage of mid-old growth
coniferous forest (tree heights of 16–25 m; Cade and Hoffman
1993). Also consistent with previous field work, our RF model
indicated strong positive associations of breeding Dusky Grouse
with forests dominated by Douglas fir, lodgepole pine (Pinus
contorta), and ponderosa pine (Pinus ponderosa; Marshall 1946,
Martinka 1972, Cade and Hoffman 1990). During the
reproductive season, Dusky Grouse have also been found to prefer
more open forests compared to more closed forests during the
winter (Stauffer and Peterson 1986). Support for partial coverages
of three vegetation types (foothill conifer wooded steppe,
montane foothill deciduous shrubland, and montane sagebrush
steppe) suggest the importance of transitional vegetation types
as Dusky Grouse migrate from high elevation forested habitat in
the winter to open canopy and herbaceous nesting habitats
(Mussehl 1960, 1963, Zwickel 1973, Johnsgard 2016).  

A used:available RSF and a categorical RF are conceptually
different models, where the RF is a discrete classifier and the used:
available RSF is not (Breiman 2001, Manly et al. 2002). Therefore,
as expected, the RSF and RF models had similar, but subtly
different, spatial predictions of potential Dusky Grouse habitat.
Generally, the RF model predicted more hectares of habitat than
the RSF model. Discrepancies between model predictions (7%
difference in predicted total habitat and non-habitat) were largely
due to the difference in the importance of the effect of road
proximity, with the largest differences in roadless areas (e.g., the
Bob Marshall Wilderness). The top RSF model included an
estimated negative linear effect of distance to road on the relative
probability of use, whereas this effect was ranked second to last
in importance by the RF model resulting in an extremely low
impact on the RF’s prediction. The supported positive effect of
road proximity on Dusky Grouse use is not intuitive but may be
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 Table 5. Estimated area (km²) of potential Dusky Grouse habitat for Montana FWP administrative regions for the 3 predictive maps.
The RSF and RF models are divided into a binary map of habitat and non-habitat based on the 60% quantile, while the ensemble map
is based on an ensemble frequency histogram where consensus between the models on predicted habitat resulted in high probability of
being habitat and areas of unagreed upon predicted habitat between the RSF and RF models resulted in medium-high probability of
being habitat, and consensus between the models on predicted non-habitat resulted in non-habitat. Total habitat is the sum of the
medium high and high probability of being habitat categories.
 
Region RSF:

Non-Habitat:
RSF:

Habitat
RF:

Non-Habitat
RF: 

Habitat
E: Non-Habitat E: 

Med. High
E: High E: Total 

Habitat

Region 1 9489 25045 5402 29133 4714 5463 24357 29821
Region 2 7112 20195 4498 22809 4073 3464 19770 23234
Region 3 22589 27509 22669 27429 19077 7104 23917 31021
Region 4 60602 10725 55435 15892 54751 6535 10041 16576
Region 5 40171 5456 39471 6157 38538 2566 4524 7089
Region 6 71873 581 71590 865 71459 544 451 995
Region 7 78732 351 78944 139 78694 289 100 390
Total 290570 89862 278008 102423 271306 25966 83160 109125

 Fig. 8. Predicted Dusky Grouse (Dendragapus obscurus) habitat
(red) for the resource selection function map (A) and random
forest map (B). Areas of consensus and differences (C) in
predicted Dusky Grouse habitat between the resource selection
function model (RSF) and random forest (RF) models, where
areas both models predict habitat are red, where only RSF
predicted habitat are purple, areas where only RF predicted
habitat are blue, and areas where both models predict non-
habitat are gray. Predicted Dusky Grouse habitat for the
ensemble model (D) where red represents high probability of
being habitat (consistently predicted to be habitat), orange
represents medium-high probability of being habitat
(inconsistently predicted to be habitat), and gray represents
non-habitat. MFWP administrative regions are delineated in
gray (left top to bottom: Regions 1, 2, 3; center top to bottom:
Regions 4, 5; and right top to bottom: 6, 7).
 

the result of how we treated the road layer used to estimate
Euclidean distance to road. Because of incomplete attribute data
in the available geospatial layer, we could not differentiate between
unimproved roads such as low-traffic forest service roads or roads
with seasonal closures, and paved roads, which included highways
and other high-traffic roads. Most used points were closer in
proximity to unimproved forest service roads with relatively light
traffic and that often experience seasonal closures. Dusky Grouse
males are known to select breeding territories on old logging roads
(Martinka 1972), and this behavior with the lack of differentiation
between forest service roads and other road types may have
resulted in a positive effect of road proximity that may not hold
true for higher-trafficked roads with non-native surfaces. Despite
the areas of disagreement among models, the two models agreed
93% of the time, and 76% of the predicted habitat in the ensemble
map was predicted by both the RSF and RF models, and statewide
predictive accuracy of both holdout training and independent
Dusky Grouse observations was high.  

Transferability of model predictions to unsampled areas outside
of Montana may be limited by regional variation in habitat
relationships. For example, the coverage of trees with a height of
16–20 m was an important predictor of relative habitat suitability
in Montana where this tree height corresponded to preferred
conifer forests at elevations of 560–3401 m but may not be a good
indicator of selection where this relationship does not occur
(Araùjo and Guisan 2006, Randin et al. 2006, Heikkinen et al.
2012). At finer spatial extents (e.g., MFWP administrative
regions), heterogeneity in landscape metric relationships may
reduce the predictive accuracy of our statewide models in areas
where training data sample sizes were small (i.e., where Dusky
Grouse observations were few). Though we found the predictive
accuracy of our individual models to be high (≥ 77%) for the state
of Montana, predictive performance of our statewide models
varied across MFWP administrative regions. For the RSF
predictive map, we correctly classified 88% of the independent
locations within MFWP regions 1–4, but only 46% were correctly
classified for Region 5, an area with no presence locations within
the training dataset. We found that despite the lack of observed
grouse locations, our RF model had almost twice the predictive
accuracy of the RSF model for Region 5 (87% vs 43%).
Differences in the predictive performance of RSF and RF models

http://www.ace-eco.org/vol19/iss2/art7/


Avian Conservation and Ecology 19(2): 7
http://www.ace-eco.org/vol19/iss2/art7/

within and outside of (e.g., extrapolated) study areas further
justify an ensemble approach to species distribution modeling
(Marmion et al. 2009, Duque-Lazo et al. 2016). By combining
multiple models, ensemble models improve accuracy and
predictive performance over individual models, depending upon
the accuracy of the individual models used (Marmion et al. 2009,
Stohlgren et al. 2010, Grenouillet et al. 2011). Indeed, predictive
accuracy improved to 94% in Region 5 when ensembled
predictions of habitat suitability were used, and overall accuracy
for the entire state of Montana improved to 97%. Other studies
have also found increased robustness and predictive power when
using an ensemble of models (Marmion et al. 2009, Stohlgren et
al. 2010, Latif  et al. 2013, Fuller et al. 2018) and in our case, it
did so despite relatively few presence locations in some
administrative regions.  

Species distribution models are often used to address many
conservation and management objectives, including surveillance
or monitoring, finding new populations of a species, and
designating areas for conservation (Guisan and Thuiller 2005,
Williams et al. 2009, Le Lay et al. 2010, Stohlgren et al. 2010,
Crall et al. 2013, Guisan et al. 2013, Fuller et al. 2018, Sofaer et
al. 2019). For all purposes, it is important that model predictions
are accurate and identify areas of predictive uncertainty. By using
an ensemble of models, we accurately and confidently predicted
areas of habitat versus non-habitat for Dusky Grouse in
Montana, even in administrative areas that had few to no presence
locations in the training dataset.

CONCLUSION
Our spatially resolute and statewide predictions of relative habitat
suitability derived from observations produced by the rigorous
and randomized IMBCR survey program are (1) an advancement
on previous ad hoc delineations of Dusky Grouse distribution
based on incidental publicly reported observations, and (2)
provide justifiable strata for prioritizing and planning Dusky
Grouse population monitoring. Using multiple modeling
techniques and an ensemble approach to prediction we were able
to understand relative habitat use and predict potential Dusky
Grouse habitat. Our results provide baseline information on
Dusky Grouse habitats in Montana that can be used to inform
conservation planning and future research. In addition, our
predictive map can be useful for developing optimal sampling for
long-term population monitoring. By identifying suitable survey
areas, our study represents a first step in developing robust
statewide population-level assessments of Dusky Grouse.
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Appendix 1. Description of habitat variables (LANDFIRE 2016a, b, c). 

Variable Source 

EVT Code 

(Ecological 

Systems) 

Statistic 
Vegetation 

Physiognomy 

North (N) Facing Aspect DEM N/A Proportion N/A 

Northeast (NE) Facing Aspect DEM N/A Proportion N/A 

East (E) Facing Aspect DEM N/A Proportion N/A 

Southeast (SE) Facing Aspect DEM N/A Proportion N/A 

South (S) Facing Aspect DEM N/A Proportion N/A 

Southwest (SW) Facing Aspect DEM N/A Proportion N/A 

West (W) Facing Aspect DEM N/A Proportion N/A 

Northwest (NW) Facing Aspect DEM N/A Proportion N/A 

Flat Aspect DEM N/A Proportion N/A 

Slope DEM N/A mean N/A 

Elevation (km) DEM N/A mean N/A 

Distance (km) to Nearest Road MSDI N/A mean N/A 

Distance (km) to Nearest Stream MSDI N/A mean N/A 

Distance (km) to Forest Edge From Outside of the Forest EVT N/A mean N/A 

Distance (km) to Forest Edge From Inside of the Forest EVT N/A mean N/A 

Northern Rocky Mountain Western Larch Savanna EVT 7010 Proportion Conifer 

Rocky Mountain Aspen Forest and Woodland EVT 7011 Proportion Hardwood 

Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest EVT 7045 Proportion Conifer 

Northern Rocky Mountain Subalpine Woodland and Parkland EVT 7046 Proportion Conifer 

Northern Rocky Mountain Mesic Montane Mixed Conifer Forest EVT 7047 Proportion Conifer 

Rocky Mountain Foothill Limber Pine-Juniper Woodland EVT 7049 Proportion Conifer 

Rocky Mountain Lodgepole Pine Forest EVT 7050 Proportion Conifer 

Northern Rocky Mountain Ponderosa Pine Woodland and Savanna EVT 7053 Proportion Conifer 

Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland EVT 7055 Proportion Conifer 

Rocky Mountain Subalpine Mesic-Wet Spruce-Fir Forest and Woodland EVT 7056 Proportion Conifer 

Inter-Mountain Basins Big Sagebrush Shrubland EVT 7080 Proportion Shrubland 

Northern Rocky Mountain Montane-Foothill Deciduous Shrubland EVT 7106 Proportion Shrubland 



Inter-Mountain Basins Big Sagebrush Steppe EVT 7125 Proportion Shrubland 

Inter-Mountain Basins Montane Sagebrush Steppe EVT 7126 Proportion Shrubland 

Northern Rocky Mountain Lower Montane-Foothill-Valley Grassland EVT 7139 Proportion Grassland 

Northern Rocky Mountain Subalpine-Upper Montane Grassland EVT 7140 Proportion Grassland 

Rocky Mountain Subalpine-Montane Mesic Meadow EVT 7145 Proportion Grassland 

Northern Rocky Mountain Foothill Conifer Wooded Steppe EVT 7165 Proportion Conifer 

Middle Rocky Mountain Montane Douglas-fir Forest and Woodland EVT 7166 Proportion Conifer 

Northern Rocky Mountain Subalpine Deciduous Shrubland EVT 7169 Proportion Shrubland 

Recently Logged-Herb and Grass Cover EVT 7191 Proportion Grassland 

Recently Logged-Shrub Cover EVT 7192 Proportion Shrubland 

Recently Logged-Tree Cover EVT 7193 Proportion Conifer 

Recently Burned-Herb and Grass Cover EVT 7195 Proportion Grassland 

Recently Burned-Tree Cover EVT 7197 Proportion Conifer 

Open Water EVT 7292 Proportion Open Water 

Developed-Roads EVT 7299 Proportion Developed-Roads 

Western Cool Temperate Pasture and Hayland EVT 7967 Proportion Agricultural 

Western Cool Temperate Wheat EVT 7968 Proportion Agricultural 

Northern Rocky Mountain Lower Montane Riparian Woodland EVT 9012 Proportion Riparian 

Rocky Mountain Alpine-Montane Wet Meadow EVT 9017 Proportion Riparian 

Rocky Mountain Cliff Canyon and Massive Bedrock EVT 9018 Proportion Sparsely Vegetated 

Rocky Mountain Subalpine-Montane Riparian Woodland EVT 9022 Proportion Riparian 

Interior Western North American Temperate Ruderal Shrubland EVT 9328 Proportion Exotic Tree-Shrub 

Northern Rocky Mountain Lower Montane Riparian Shrubland EVT 9512 Proportion Riparian 

Interior Western North American Temperate Ruderal Grassland EVT 9828 Proportion Exotic Herbaceous 

no vegetation present EVC N/A Proportion N/A 

canopy cover from sparse vegetation EVC N/A Proportion N/A 

canopy cover from agricultural crops EVC N/A Proportion N/A 

developed areas EVC N/A Proportion N/A 

Tree Canopy Cover 10-19% EVC N/A Proportion N/A 

Tree Canopy Cover 20-29% EVC N/A Proportion N/A 

Tree Canopy Cover 30-39% EVC N/A Proportion N/A 

Tree Canopy Cover 40-49% EVC N/A Proportion N/A 



Tree Canopy Cover 50-59% EVC N/A Proportion N/A 

Tree Canopy Cover 60-69% EVC N/A Proportion N/A 

Tree Canopy Cover 70-79% EVC N/A Proportion N/A 

Tree Canopy Cover 80-88% EVC N/A Proportion N/A 

Shrub Canopy Cover 10-19% EVC N/A Proportion N/A 

Shrub Canopy Cover 20-29% EVC N/A Proportion N/A 

Shrub Canopy Cover 30-39% EVC N/A Proportion N/A 

Shrub Canopy Cover 40-49% EVC N/A Proportion N/A 

Herb Canopy Cover 10-19% EVC N/A Proportion N/A 

Herb Canopy Cover 20-29% EVC N/A Proportion N/A 

Herb Canopy Cover 30-39% EVC N/A Proportion N/A 

Herb Canopy Cover 40-49% EVC N/A Proportion N/A 

Herb Canopy Cover 50-59% EVC N/A Proportion N/A 

Herb Canopy Cover 60-69% EVC N/A Proportion N/A 

Herb Canopy Cover 70-79% EVC N/A Proportion N/A 

Tree Height 1-5m EVH N/A Proportion N/A 

Tree Height 6-10m EVH N/A Proportion N/A 

Tree Height 11-15m EVH N/A Proportion N/A 

Tree Height 16-20m EVH N/A Proportion N/A 

Tree Height 21-26m EVH N/A Proportion N/A 

Shrub Height 0.1-0.5m EVH N/A Proportion N/A 

Shrub Height shrubs 0.6-1m EVH N/A Proportion N/A 

Shrub Height 1.1-1.5m EVH N/A Proportion N/A 

Shrub Height 1.6-2.0m EVH N/A Proportion N/A 

Herb Height 0.1-0.5m EVH N/A Proportion N/A 

Herb Height 0.6-1m tall EVH N/A Proportion N/A 
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Appendix 2. Description of variables used to create a forest layer for Montana (LANDFIRE 2016). 

EVT code  

(ecological 

systems) 

Existing Vegetation Type 

 (ecological systems name) 

Vegetation  

Physiognomy 

Collapsed Vegetation  

Type Name 

7010 Northern Rocky Mountain Western Larch Savanna Conifer Western Larch Forest and Woodland 

7045 Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest Conifer 
Douglas-fir-Ponderosa Pine-Lodgepole Pine 

Forest and Woodland 

7046 Northern Rocky Mountain Subalpine Woodland and Parkland Conifer Subalpine Woodland and Parkland 

7047 Northern Rocky Mountain Mesic Montane Mixed Conifer Forest Conifer 
Douglas-fir-Grand Fir-White Fir Forest and 

Woodland 

7049 Rocky Mountain Foothill Limber Pine-Juniper Woodland Conifer Limber Pine Woodland 

7050 Rocky Mountain Lodgepole Pine Forest Conifer Lodgepole Pine Forest and Woodland 

7053 Northern Rocky Mountain Ponderosa Pine Woodland and Savanna Conifer Ponderosa Pine Forest, Woodland and Savanna 

7055 Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland Conifer Spruce-Fir Forest and Woodland 

7056 Rocky Mountain Subalpine Mesic-Wet Spruce-Fir Forest and Woodland Conifer Spruce-Fir Forest and Woodland 

7057 Rocky Mountain Subalpine-Montane Limber-Bristlecone Pine Woodland Conifer Limber Pine Woodland 

7062 Inter-Mountain Basins Curl-leaf Mountain Mahogany Woodland Conifer Mountain Mahogany Woodland and Shrubland 

7165 Northern Rocky Mountain Foothill Conifer Wooded Steppe Conifer Douglas-fir Forest and Woodland 

7166 Middle Rocky Mountain Montane Douglas-fir Forest and Woodland Conifer Douglas-fir Forest and Woodland 

7167 Rocky Mountain Poor-Site Lodgepole Pine Forest Conifer Lodgepole Pine Forest and Woodland 

7179 
Northwestern Great Plains-Black Hills Ponderosa Pine Woodland and 

Savanna 
Conifer Ponderosa Pine Forest, Woodland and Savanna 

7193 Recently Logged-Tree Cover Conifer Transitional Forest Vegetation 

7197 Recently Burned-Tree Cover Conifer Transitional Forest Vegetation 

7200 Recently Disturbed Other-Tree Cover Conifer Transitional Forest Vegetation 

7061 Inter-Mountain Basins Aspen-Mixed Conifer Forest and Woodland Conifer-Hardwood Aspen-Mixed Conifer Forest and Woodland 

7009 Northwestern Great Plains Aspen Forest and Parkland Hardwood Aspen Forest, Woodland, and Parkland 

7011 Rocky Mountain Aspen Forest and Woodland Hardwood Aspen Forest, Woodland, and Parkland 

7161 Northern Rocky Mountain Conifer Swamp Riparian Spruce-Fir Forest and Woodland 

9019 Rocky Mountain Lower Montane-Foothill Riparian Woodland Riparian Western Riparian Woodland and Shrubland 

9022 Rocky Mountain Subalpine-Montane Riparian Woodland Riparian Western Riparian Woodland and Shrubland 
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Appendix 3.  Uncertainty maps for the RSF model. Map A (top) represents a map created using 

the high confidence intervals for the RSF’s beta estimates and then converted to a binary map 

using the same threshold as used when creating the RSF binary map. Map B represents a map 

created using the low confidence intervals for the RSF’s beta estimates, following the same 

methodology used to create map A.  
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