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EXECUTIVE SUMMARY 

This report summarizes the results of the third year (January–December, 2021) of a four-year 

(2019–2022) research project to develop methods for unbiased population monitoring for dusky 

grouse (Dendragapus obscurus; previously “blue grouse”) in Montana. The primary objectives 

of this study are to 1) generate a predictive model of habitat suitability for dusky grouse 

throughout their range in Montana, 2) develop and evaluate survey methods that provide 

unbiased statewide and regional estimates of dusky grouse densities and annual trend monitoring 

in Montana, and 3) develop methods that facilitate rigorous and cost-effective evaluations of 

grouse-habitat relationships and the effects of management.  

We built and evaluated an updated statewide habitat model for dusky grouse in Montana. We 

obtained dusky grouse observations collected during the spring (April–June) from 2009–2020 

from the Integrated Monitoring in Bird Conservation (IMBCR) program and extracted habitat 

information for detected/not-detected locations using remotely-sense geospatial datasets. We 

evaluated relative habitat use with resource selection functions calibrated using generalized 

linear mixed models. Candidate models representing hypothesized relationships between grouse 

detections/non-detections and habitat conditions (e.g., forest type and coverage, average 

elevation, slope) were compared using multi-model inference based on information theory. We 

found the following spatially-explicit habitat attributes to have a significant effect on whether or 

not a dusky grouse was detected at a site: proportion of area with a southeast facing or west 

facing aspect, average distance to nearest stream, proportion of foothill conifer wooded steppe, 

proportion of montane-foothill deciduous shrubland, proportion of montane sagebrush steppe, 

proportion of trees with a height of 1–5 m, and the proportion of trees with a height of 16–20 m. 

Our results indicate that relative use increased with higher proportions of area with a southeast 

facing aspect (β = 1.65  ± 0.70SE) and higher proportions of area with a west facing aspect (β = 

1.24  ± 0.67). Both average distance to nearest stream (β = 7.28 ± 2.11, β = -7.49 ± 2.72) and 

proportion of foothill conifer wood steppe (β = 150.90 ± 32.53, β = -4167.49 ± 261.03) were 

predicted to have a quadratic relationship with relative use. Relative use was maximized at 0.5 

km from a stream. Relative use increased rapidly until 2% of the survey area was classified as 

foothill conifer wooded steppe, where it then decreased rapidly to almost 0%. Proportion of 

montane-foothill deciduous shrubland (β = 0.11 ± 0.06), proportion of montane sagebrush steppe 

(β = 0.16 ± 0.06), and the proportion of trees with a height of 16–20 m (β = 0.46 ± 0.08) had 

positive nonlinear relationships with relative use by dusky grouse, where use initially increased 

exponentially and then either leveled off or increased at a linear rate. Relative use remained 

relatively constant after the proportion of the study area that was montane-foothill deciduous 

shrubland or proportion of montane sagebrush steppe approached 5–10%. After the proportion of 

the study area with trees 16–20m tall approached 5%, relative probability of use began to 

increase linearly instead of exponentially. The proportion of trees with a height of 1–5m (β = -

0.63 ± 0.24) had a negative nonlinear relationship with relative use by dusky grouse, where 

relative use initially decreased rapidly and then became relatively constant. Our model had high 

predictive accuracy with an ROC value of 0.89 (95% CI: 0.84–0.93), and correctly classified 

104/132 of the independently detected grouse locations collected by FWP. Our habit model 

classified 96,665 km2 into the two highest relative probability of use categories, with the highest 

amounts of dusky grouse habitat predicted to occur in FWP administrative regions 1, 2, and 3.  

We conducted spring surveys for dusky grouse in the western half of Montana in FWP Regions 

1–5. Survey methods consisted of point-counts with electronic playback to increase detections, 



and walking transect routes. Potential survey transects were randomly generated in areas 

identified to have high relative likelihood of dusky grouse occurrence as predicted by the model 

of relative habitat suitability we developed in 2019. The pool of potential transects was revised 

from the pool of potential transects in 2020, with 90% of the transects remaining the same. 

Montana State University staff, volunteers, and MFWP field biologists selected a total of 60 

survey transects to survey in each region. Survey transects consisted of 6 independent survey 

points spaced 400 meters apart along a road or trail. Surveys were only conducted during the 

spring breeding season during April 10 – May 31 when vocalizations of male grouse are greatest. 

During the survey period, a total of 263 transects were surveyed, with 53 transects surveyed in 

Region 1, 55 in Region 2, 57 in Region 3, 53 in Region 4, and 42 in Region 5. The average 

number of dusky grouse detected per point count survey was 0.08 ± 0.30 SE for Region 1, 0.23 ± 

0.54 for Region 2, 0.20 ± 0.53 for Region 3, and 0.07 ± for Region 4. Relative abundance 

estimates for Region 5 are unavailable at the time of this report.  

We conducted a preliminary analysis to explore the effects of survey conditions on dusky grouse 

counts. Temperature, average wind speed, precipitation, cloud cover, day since the start of the 

survey period (April 10th = day 0), and minutes from sunrise were associated with the max 

number of dusky grouse detected. The number of grouse observed was positively associated with 

increases in temperature (β = 0.02 ± 0.01SE) and decreases in average wind speed (β = -0.06 ± 

0.04) . The number of grouse observed had a nonlinear quadratic relationship with both minutes 

since sunrise (β = 0.01 ± SE 0.003, β = -0.00003 ± SE 0.00001) and number of days since the 

survey period started (β = 0.24 ± SE 0.05, β = -0.004 ± SE 0.0007)). The number of dusky 

grouse observed peaked during May 5th–May 20th, and between 100–150 minutes post sunrise. 

Dusky grouse counts were greatest on clear days (0–15% cloud cover) and lower when it was 

snowing than if there was rain, fog, or no precipitation.  
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OBJECTIVES 

Objective 1: Generate a predictive model of habitat suitability for dusky grouse throughout 

their range in Montana 

Accomplishments 

We developed and evaluated a predictive model of habitat suitability that can be used to identify 

appropriate survey sites and to explore relationships between habitat characteristics and 

probability of use by dusky grouse. We obtained dusky grouse observation data from the 

Integrated Monitoring in Bird Conservation Regions monitoring program (IMBCR) 

administrated by the Bird Conservancy of the Rockies. The IMBCR program conducts avian 

point count surveys between May and July each year at randomly selected locations that vary 

between years across Montana and other western states (Pavlacky et al. 2017, Hanni et la 2018).  

We obtained observation data spring surveys from 2009–2020 for a total of 25,654 surveys 

conducted across 6,092 sites in Montana. We reduced observations from the IMBCR point 

counts to dusky grouse detected/ not detected data that we then used to represent sites that were 

used (detected) and available (not detected). If a dusky grouse was detected at least once during 

the 11-year period, a site was classified as used and if a dusky grouse was not detected the site 

was classified as available. Sites were classified as available instead of unused because it is 

possible that a dusky grouse was present but not detected. After reducing the data to used and 

available sites, we classified 132 used sites and 5,960 sites as available. Given that a dusky 

grouse call may be difficult to detect depending on call type at distances greater than 50–100m 

(Farnsworth 2020) and potential uncertainty with GPS locations, we assumed that all dusky 

grouse observed were located within 250 m of the point count location.   

We used remotely-sensed geospatial datasets to extract habitat information within a circular 250-

m buffer drawn around each point count location. We used digital elevation models (DEMs) 

from U.S. Geological Survey, ArcGIS Pro (Environmental Systems Research Institute, Redlands, 

CA) and geospatial modeling environment (GME) to measure average elevation and slope of the 

250-m radii area (Beyer 2015, U.S Geological Survey 2017). We also used the DEMs, spatial 

analyst tools of ArcGIS Pro and GME to extract the proportion of N, NE, E, SE, S, SW, and W 

facing aspects and flat ground of the 250-m radii area (Beyer 2015, U.S Geological Survey 

2017). We calculated the average distance of the 250-m radii area to the nearest stream and to the 

nearest road using the spatial analyst tools of ArcGIS Pro applied to the Montana Spatial Data 

Infrastructure (MSDI) Transportation Framework and Hydrography datasets downloaded from 

the Montana state library and GME (Beyer 2015, Montana Spatial Data Infrastructure 2017, 

2018). We updated our previous vegetation geospatial datasets in order to define habitat 

conditions based off of a 2016 base map created using updated data and processing techniques 

instead of a 2001 base map (LANDFIRE 2020). We downloaded LANDFIRE geospatial data 

with a 30 × 30 m spatial resolution for existing vegetation type (EVT), existing vegetation cover 

(EVC), and existing vegetation height (EVH; Landfire 2016a, b, c) . EVT is the type of plant 



community present, of which in Montana there are 121 types; EVC is the vertically projected 

percent cover by a live canopy layer given in 1% increments; EVH is the average height of the 

dominant vegetation given in 1m increments (Landfire 2016a, b, c, 2019, 2020) . We created a 

forest layer based on the vegetation physiognomy (EVT_PHYS) description for the different 

LANDFIRE vegetation types and vegetation community name (Table 1; LANDFIRE 2016a). 

We used the spatial analyst tools of ArcGIS Pro and GME to calculate the average distance to 

the edge of the forest type from within and outside of the forest (Beyer 2015). We used GME to 

calculate the proportion of vegetation type, canopy cover, and height within 250 meters of the 

survey location (Beyer 2015). After the vegetation canopy and height information were 

extracted, we condensed the information from their 1% or 1m increments to larger categories. 

We condensed the 1% increments for the canopy vegetation to 10% increments and the 1-m 

increments for vegetation height to 5-m increments. For both types of habitat information there 

were also several categories of developed habitat or barren habitat that was grouped into two 

categories: developed and sparse vegetation. We removed variables from consideration if they 

occurred at less than 1% of the survey sites. Overall, we extracted geospatial habitat information 

for a total of 118 potential variables that were then used to build resource selection functions 

(RSF).  

We evaluated relative habitat use with resource selection functions (RSFs) fitted using general 

linear mixed models (GLMMs) with a logit link function, binomial error distribution, and the 

“bobyqa” optimizer with a maximum of 100,000 iterations for approximating beta coefficients 

using the ‘lme4’ package in program R (Bates et al. 2015, R Core Team 2015). Our response 

variable was either a dusky grouse was detected (1) or not detected (0), with our habitat factors 

as independent variables, and a random intercept term for unique IMBCR transects to account 

for potential spatial autocorrelation in the observation data due to the survey points being 

grouped along survey routes (Zurr 2009, Hanni et la 2018).   

Before fitting models with RSFs, we explored the possibility that the behavioral response of 

dusky grouse to some habitat variables may be nonlinear. Habitat variables such as proportion of 

conifer forest may exhibit a threshold response or variables like elevation may exhibit a 

quadratic response (Figure 1). Initially we explored potential nonlinear responses by plotting the 

relationship between the response variable (detected or not detected) and a “smoothed” function 

for each habitat variable using univariate generalized additive models (GAMs; Guisan and 

Zimmerman 2000, Guisan et al 2002, McNew et al 2013). If the variable showed no relationship 

with the response variable (e.g, Figure 2), we removed it from the dataset. With the remaining 

variables, we further explored potential linear and nonlinear relationships using linear equations 

to represent the hypothesized linear and nonlinear forms (Guisan and Zimmerman 2000). We 

used [x + x2] for the quadratic form and the natural log of the explanatory variable (ln[x + 0.001] 

to represent a pseudolinear threshold (Franklin 2000, Dugger et al 2005, McNew et al 2015). We 

performed the preliminary screenings of the three functional responses using univariate models 

built using GLMMs with a logit link function and binomial error distribution. We evaluated 

support for non-linear relationships for each variable by comparing Akaike’s Information 

Criterion for small sample size (AICc) for GLMMs with linear and non-linear terms (Burnham 

and Anderson 2002). While evaluating the potential non-linear and linear relationships with 

AICc, if the change in AICc from the ‘best’ model to was < 2 then the models were considered to 

have similar support (Burnham and Anderson 2002), and we chose the simplest model (the 

model with fewest parameters). If the number of parameters was the same, we looked at figure of 

the plotted GAM function for that variable to determine which potential relationship best fit the 



variable. In the majority of the cases, the plotted GAM function best resembled the potential 

relationship with the lowest AICc. If problems with modeling a relationship occurred while 

attempting to evaluate one of the relationship forms, that relationship was not considered. 

After preliminary screenings of the functional responses, we tested for multicollinearity in the 

remaining 89 habitat predictor variables using Spearman-rank correlations to prevent overfitting 

the model. If correlations were (|r| > 0.5), we considered the variables to be correlated. If 

variables were correlated, we first used general knowledge of dusky grouse habitat to evaluate 

which variable was more biologically relevant to dusky grouse. If we had no previous knowledge 

on whether one variable was more biologically relevant, we evaluated univariate models using 

AICc, and whichever variable had the lower AICc value was selected and the other variable was 

removed from our analysis (Aldridge et al 2012). If the delta AICc was < 2, then we selected the 

most parsimonious (simplest) model (Burnham and Anderson 2002, Arnold 2010). As a variable 

may be correlated with more than one variable, we evaluated correlations based upon the highest 

correlation to the lowest, removing the variable we considered to be less relevant from the 

variable pool as we went. After assessing correlation, we evaluated relative habitat use of the 

different habitat predictor variables using backwards stepwise selection of the resource selection 

function model (Hosmer et al 2013). We ordered variable removal based on p-values (Hosmer et 

al 2013). After removing a variable, we assessed support for each model using AICc (Burnham 

and Anderson 2002). If the models had similar support (Burnham and Anderson 2002, Arnold 

2010), instead of removing a model from the model set, we retained all the models and we 

continued backwards selection until the newest model either had the lowest AICc or a ΔAICc ≥ 2.  

We evaluated the remaining 42 predictors in groups. Within each group, we used backwards 

stepwise selection to determine the top performing variables for inclusion in the final candidate 

model set. The different groups included non-vegetation variables (aspect, distance to variables), 

conifer vegetation type, hardwood vegetation type, grassland vegetation type, shrubland 

vegetation type, riparian vegetation type, other vegetation type, vegetation canopy cover, and 

vegetation height. The top performing variables from each of categories were then added to the 

final model set and evaluated using backwards stepwise selection. 

In a used versus available study design, we cannot estimate the true probability of use from a 

logistic regression model, we can only estimate the relative probability of use (Manly et al 2002). 

Because of this we used the coefficients from the estimated logistic regression for the 

corresponding slope coefficients (βi) to estimate the relative probability of use for a site by dusky 

grouse.  

w(x) = exp(β1X1 + β2X2, … βiXi)    

(Manly et al 2002, Boyce and McDonald 1999). 

We evaluated the performance of our model and its predictive capability using the training 

(IMBCR) dataset using cross-validation, and an independent dataset of incidental grouse 

locations collected April–June from 2017–2019 by Montana Fish, Wildlife, and Parks (MFWP) 

personnel. We first used threshold-independent receiver operating characteristic plots (ROC) and 

area under the curve (AUC) to evaluate model performance (Zweig and Campbell 1993, Fielding 

and Bell 1997). For an ROC plot, we plotted the probability of detecting a true signal (sensitivity 

values) on the y-axis with their corresponding probability of detecting a false positive (1 – 

specificity) on the x-axis (Fielding and Bell 1997, Hosmer et al 2013). An AUC greater than 0.7 

indicates a that the model has predictive power and that the performance is better than that of 



pure chance (Fielding and Bell 1997, Boyce et al 2002, Hosmer et al 2013, Bohnett et al 2020). 

We plotted and calculated ROC/AUC using cross validation of the original dataset, where we 

conducted a simulation with 500 iterations, where for each iteration 80% of the IMBCR data was 

used to train our model and the other 20% of the IMBCR data was used to test the model. We 

calculated the average AUC value with a 95% confidence interval.  

We then used the independent dataset of incidental grouse observations collected by MFWP to 

further validate our model. We used our resource selection function to calculate the RSF value 

for each independent observation for the IMBCR dataset and the MFWP dataset. We used the 

IMBCR dataset to categorize the RSF values into 5 quantile bins that represented the relative 

probability of a point being classified as a site used by dusky grouse (Boyce et al 2002, Johnson 

et al 2006, McNew et al 2013). The bins represented low, medium-low, medium, medium-high, 

and high probability of relative use. We then regressed the observed proportion of grouse 

locations from the MFWP or test dataset in each quantile bin with the observed proportions of 

grouse locations in each quantile bin from the IMBCR or training dataset. We used linear 

regression to compare the training and testing datasets, and we considered a good model fit to 

have a high R2 value, a slope of 1, and an intercept of 0 (Johnson et al. 2006, McNew et al 2013). 

We also conducted a simulation with 500 iterations, where we calculated the average percent of 

correctly predicted locations with a 95% confidence interval for a subset (80%) of the MFWP 

dataset. Instead of using an arbitrary threshold, we considered those observations whose RSF 

values fell into our quantile bins representing medium-high and high relative probability of use 

as correctly predicted and those that did not as incorrectly predicted.   

To evaluate dusky grouse occurrence across Montana, we calculated the average or proportion 

within a 250-m circular moving window for each habitat variable and then used the coefficients 

from our final model and their corresponding variables to construct a predictive map of relative 

occurrence. We calculated the total area (km2) predicted to fall within each quantile bin by 

summing the number of predicted for each category and multiplying by pixel size (0.0009).  

Results. – After backwards stepwise selection, 8 variables were considered to have a significant 

effect on whether dusky grouse were detected or not detected at a survey site (Table 2). The 

variables included proportion of area with a southeast facing aspect or west facing aspect, 

average distance to nearest stream, proportion of foothill conifer wooded steppe, proportion of 

montane-foothill deciduous shrubland, proportion of montane sagebrush steppe, proportion of 

trees with a height of 1–5m, and the proportion of trees with a height of 16–20m. Relative use 

increased with higher proportions of area with a southeast facing aspect (β = 1.65  ± 0.70SE) and 

higher proportions of area with a west facing aspect (β = 1.24  ± 0.67; Table 3). The other 6 

habitat characteristics exhibited non-linear relationships with relative use. Both average distance 

to nearest stream (β = 7.28 ± 2.11, β = -7.49 ± 2.72; Table 3) and proportion of northern rocky 

mountain foothill conifer wood steppe (β = 150.90 ± 32.53, β = -4167.49 ± 261.03; Table 3) had 

a quadratic relationship with relative use. Relative use increased until distance to stream was 

greater than 0.5 km, after which relative use decreased. Once the distance to stream was greater 

than 1.5km, relative probability of use was predicted to be almost 0%. Relative use increased 

rapidly until 2% of the survey area was classified as northern rocky mountain montane-foothill 

deciduous shrubland habitat, where it then decreased rapidly to almost 0%. Proportion of 

northern rocky mountain montane-foothill deciduous shrubland (β = 0.11 ± SE 0.06), proportion 

of inter-mountain basins montane sagebrush steppe (β = 0.16 ± SE 0.06), and the proportion of 

trees with a height of 16–20m (β = 0.46 ± SE 0.08) had positive nonlinear relationships with 



relative use by dusky grouse (Table 3). Relative use increased exponentially until the proportion 

of the study area for northern rocky mountain montane-foothill deciduous shrubland and 

proportion of inter-mountain basins montane sagebrush steppe each reached 5–10% and then 

leveled off and increased slowly as proportion of the two habitat characteristics increased. As 

proportion of trees with a height of 16–20m increased, the relative probability of use increased 

rapidly from 0 to 5%, and then increased at a more linear rate. The proportion of trees with a 

height of 1–5m (β = -0.63 ± SE 0.24) had a negative nonlinear relationship with relative use by 

dusky grouse (Table 3). Relative use decreased rapidly as the proportion of trees with a height of 

1–5m increased from 0–5%, after which the relative use was near zero and continued to decrease 

at a slow rate as the proportion of trees with a height of 1–5m increased. Conditional and 

marginal R2 for our model were 0.60 and 0.55, respectively, indicating that most of the variation 

in the response data from our model is described by the fixed effects, with only an additional 5% 

associated with our points being clustered along survey routes.   

Several habitat characteristics hypothesized to be important for dusky grouse such as elevation, 

distance to conifer forest, or different conifer community vegetation types did not end up in the 

final model due to correlation with multiple other variables and thus were removed from the 

potential list of covariates. Proportion of trees with a height of 16–20m is highly correlated with 

many other forest type and non-vegetation type variables. Trees with a height of 16–20m is 

strongly and positively correlated with the proportion of canopy cover by trees where the 

percentage of canopy cover by trees is 30–39%, 40–49%, and 60–69%, and weakly correlated 

where the percentage of canopy cover by trees is 20–29%. Trees with a height of 16–20m are 

also positively correlated with slope and elevation, two other factors thought to be important for 

determining dusky grouse habitat. Also positively correlated are several different vegetation 

community types: rocky mountain lodgepole pine forest, northern rocky mountain dry-mesic 

montane mixed conifer forest, rocky mountain subalpine dry-mesic spruce-fir forest and 

woodland, and middle rocky mountain montane Douglas fir and woodland. Proportion of several 

percentages of herb canopy cover and herb height, as well as several shrub community 

vegetation types are also negatively correlated with the proportion of trees with a height of 16–

20m. The other variables included in the final model set were not strongly correlated with most 

other variables. 

Our habitat model had high predictive accuracy with a mean ROC value of 0.89 (95% CI: 0.84–

0.93; Figure 3). In addition, our habitat model correctly classified 104 out of 132 (78.8%) of the 

independently detected grouse locations into the two categories with the highest relative 

probability of use (Figure 4). Linear regression produced an intercept close to zero (95% CI:       

-0.22, 0.02), a slope of 1.52 (SE = 0.14), and an R2 value of 0.976; indicating high predictive 

accuracy for our resource selection model. Our simulation showed that our model correctly 

predicted the locations from the independent dataset as used 78.7% (95% CI: 0.75, 0.82) of the 

time. 

Our habitat model classified 96,665 km2 of Montana into the two highest relative probability of 

use categories (Figure 5). The highest total amounts of suitable dusky grouse habitat were 

predicted to occur in Montana FWP administrative regions 1, 2, and 3 (Table 4). 

Goals for Next Quarter 

Next quarter, we will expand the habitat modeling to include machine learning approaches like 

Random Forest. We will use an ensemble approach to estimate model-averaged predictions of 



habitat suitability and calculate amount of dusky grouse habitat by region in Montana. We will 

draft and submit a manuscript for publication in an open-source peer-reviewed journal.  

Objective 2: Develop and evaluate unbiased survey methods that provide statewide and 

regional estimates of dusky grouse densities and annual trend monitoring in Montana 

Accomplishments 

Methods 

Spring Surveys. —We used protocols identified previously to select and survey transects for 

grouse in 2021. In 2020, we used simulated datasets and N-mixture models to determine the 

survey effort required to get useful annual population estimates with the desired level of 

estimator precision of <15% using point-counts with electronic playback. Our results indicated 

that 360 independent points, with 4 replicate surveys, should on average, provide useful annual 

estimates of dusky grouse abundance (McNew et al. 2020).  

We revised our potential pool of survey transects for spring 2021 to remove transects that were 

believed to be almost always inaccessible in the spring, were close to rivers/streams that 

inhibited our ability to detect dusky grouse, or were placed upon roads or trails that no longer 

existed. For each transect removed, we added an additional transect by randomly generating 

potential survey points using ArcGIS and a model of relative habitat suitability (McNew et al. 

2018; Figure 1). Survey transects consisted of 6 points along a road or trail, spaced 400 m apart 

to ensure independence (though the traveled distance along the trail/road may be greater than 400 

m). The first point for transects along trails was randomly placed between 100–200 m from the 

trailhead. The first point for transects along roads was 100 m from the parking location. Field 

biologists and volunteers specifically trained to conduct dusky grouse surveys selected among a 

randomly-generated set of potential transects and conducted surveys during 10 April – 30 May.  

Surveys consisted of a total of four four-minute independent point counts at each point location 

along the transect. Two of the four independent point counts occurred as the observer traveled 

from the start to end of the transect, then a 10-minute break occurred, and two additional point 

counts occurred as observers traveled from the end to the beginning of the transect. Each pair of 

point counts was conducted consecutively with ≤ 1 minute between them, yielding in a total of 4 

point-counts per point in one morning. In this way, a transect only needed to be visited once, 

while still achieving 4 replicate surveys at each point. To increase detections of male dusky 

grouse, each four-minute point count occurred with female calls played electronically through a 

portable music player or cell phone and speaker (SanDisk 8 GB Clip Jam Mp3 Player, JBL 

Charge 3 speaker; Stirling and Bendell 1966). The female calls consisted of a four-minute 

recording that consisted of a female cackle and cantus. Playback recordings consisted of 

alternating playback of 30 seconds of calling and 30 seconds of silence until the entire four 

minutes of survey had elapsed. Each 4-minute survey was treated as an independent sample and 

all grouse observed were recorded during each period. The distance to each observed grouse was 

measured with a laser rangefinder and recorded. All dusky, ruffed, and spruce grouse observed 

(visually or auditorily) during transit to and between survey points were also recorded and 

perpendicular distances to the transect recorded. We created an access database to store and 

organize all dusky grouse survey data.  

Effects of survey conditions on counts of dusky grouse. —  We conducted preliminary analyses 

using generalized linear models (GLMs) to examine the relationship between the maximum 



number of dusky grouse counted during each pair of point count surveys and cloud cover, 

precipitation, temperature (C°), average wind speed (km/hr), minutes since sunrise, and day since 

the survey period started. The number of dusky grouse observed, or relative abundance, is the 

result of true abundance in the area × the probability of detecting a grouse if it’s available to be 

detected. Here we hypothesize that survey conditions actually affected the probability of 

detection and not local abundance. We recorded cloud cover, precipitation, and temperature at 

the beginning of each pair of point count surveys. We classified cloud cover into 4 categories: 0–

15%, 16–50%, 51–80%, and 81–100% of the sky covered. We classified precipitation as fog (F), 

snow (S), rain (R), or none (N). We measured temperature and wind speed using a kestrel 2000 

hand-held weather meter. To calculate minutes from sunrise for each region, we chose a 

representative city for each region and identified the time of sunrise for that city using 

TimeAndDate.com. We used the time of sunrise in Kalispell for Region 1, Missoula for Region 

2, Bozeman for Region 3, White Sulphur Springs for Region 4, and Billings for Region 5. After 

we determined the time of sunrise for each survey day, we subtracted the time of sunrise from 

the start time for a pair of point count surveys to determine the minutes since sunrise for each 

pair of point count surveys. For day since the survey period started, we used April 10th as day 0, 

and then numbered the days consecutively until the end of the survey period; so April 11th was 

day 1, April 12th was day 2, and so on.  

Before fitting models to explore the relationship between survey conditions and relative 

abundance, we examined the possibility of nonlinear relationships between relative abundance 

and a survey condition. We hypothesized that minutes from sunrise and day since the survey 

season started could exhibit nonlinear responses due to known temporal display behaviors of 

grouse (Bendell and Elliot 1967, Zwickel and Bendell 2004, Farnsworth 2020). We explored 

potential linear and nonlinear responses by using linear equations to represent our hypothesized 

relationships. We used [x + x2] for the quadratic form and the natural log of the explanatory 

variable (ln[x + 0.001] to represent a pseudolinear threshold (Franklin 2000, Dugger et al 2005, 

McNew et al 2015). We evaluated support for a non-linear relationship by using AICc to evaluate 

univariate models of the three different functional responses built using GLMs with a poisson 

error distribution (Burnham and Anderson 2002). After preliminary screenings of the different 

potential functional responses, we tested our quantitative variables for collinearity using 

Spearman-rank correlations. If correlations were (|r| > 0.7), we considered the variables to be 

correlated, and the variable with the lowest AICc was retained and the correlated variable 

removed. After assessing correlation, we evaluated the relationship between survey conditions 

and relative abundance using backwards stepwise selection, with variable removal based on p-

values (Hosmer et al 2013). We evaluated support for each model using AICc, considering the 

model with the lowest AICc to be the best model (Burnham and Anderson 2002).  

Preliminary Results  

Spring Surveys.—During the spring survey period, field crews surveyed a total of 263 transects; 

53 transects were surveyed in Region 1, 55 in Region 2, 57 in Region 3, 53 in Region 4, and 42 

in Region 5. 41 transects were only partially surveyed (either all points were not reached or not 

all points were surveyed four times) due to equipment failure, presence of wildlife (bears and 

mountain lions), weather, or snow pack that made accessing the rest of a transect impossible. In 

Region 1, we surveyed 309 points with 99% of the points surveyed four times, 1 point surveyed 

3 times, and 2 points surveyed twice. In Region2, we conducted surveys at surveys at 320 sites, 

with 94% of the points surveyed 4 times, 5 points surveyed 3 times, and 14 points only surveyed 



twice. In region 3, we conducted surveys at 353 points, with 98% of the points surveyed 4 times, 

1 point surveyed 3 times, and 6 points surveyed twice. In Region 4, we surveyed 309 points with 

96% of the points surveyed 4 times, 9 points surveyed 3 times, and 3 points surveyed twice. In 

Region 5, we surveyed 252 points and all points were surveyed 4 times. In total, we conducted 

1,231 surveys in Region 1, 1,247 surveys in Region 2, 1,399 in Region 3, 1,221 surveys in 

Region 4, and 1,008 surveys in Region 5. Overall, 43 people assisted in conducting the surveys, 

with the majority (67%) of the transects completed by a MSU field crew. Surveys occurred 

during 10 April–31 May, with the majority of the transects (88%) surveyed in May.      

In Region 1, we detected dusky grouse at 23 (7.4%) of 309 survey points (Table 5). In Region 2, 

dusky grouse were detected at 73 (17.8%) of 320 points (Table 5). In Region 3, we detected 

dusky grouse at 53 (15.0%) of 252 surveys. In Region 4, dusky grouse were detected at 20 

(6.5%) of 309 points (Table 2). The maximum number of dusky grouse detected during a single 

point-count was 4, and the minimum was 0 (Table 3). The average number of dusky grouse 

observed at each point was 0.08 ± 0.30SD in Region 1, 0.23 ± 0.54 in Region 2, 0.20 ± 0.53 in 

Region 3, and 0.07 ± 0.26 in Region 4 (Table 4).  

Effects of survey conditions on counts of dusky grouse.—No variables were removed using 

backwards stepwise selection. We found support for the effects of cloud cover, temperature, 

wind speed, minutes since sunrise, and day since the survey period started on the number of 

dusky grouse observed. Counts were highest on clear days and lowest when it was snowing 

(Table 9). Higher counts of dusky grouse were positively associated with temperature (β = 0.02 ± 

SE 0.01) and negatively associated with average wind speed (β = -0.06 ± SE 0.04; Table 8). The 

number of dusky grouse detected had a nonlinear quadratic relationship with both minutes since 

sunrise (β = 0.01 ± SE 0.00, β = -0.00003 ± SE 0.00) and number of days since the survey period 

started (β = 0.24 ± SE 0.05, β = -0.004 ± SE 0.0, Table 8). The number of dusky grouse counted 

peaked between May 5th–May 20th (25–40 days since the survey period started), and between 

100–150 minutes post sunrise (Figures 5,6).  

Goals for Next Quarter 

We will build and evaluate N-mixture models and distance sampling models for the point count 

data and estimate regional densities of dusky grouse. We will evaluate support for the effects of 

environmental covariates on probability of detection and abundance that can be used to refine 

survey protocols for future grouse surveys in Montana. Future work in 2021 will evaluate the 

utility of open population N-mixture models for estimating regional changes in population sizes 

annually.  

Objective 3: Develop methods that facilitate rigorous and cost-effective evaluations of 

grouse-habitat relationships and the effects of management (e.g. timber harvest) 

Accomplishments 

For effort/accomplishments, reference objective 2. 

Goals for Next Quarter 

For goals for next quarter, reference objective 2.  



Table 1. Description of variables used to create a forest layer for Montana. Information taken from EVT_descriptions table 

LANDFIRE 2021). The vegetation lifeform for all variables is Tree.  

EVT code  

(ecological 

systems) 

Existing Vegetation Type 

 (ecological systems name) 

Vegetation  

Physiognomy 

Collapsed Vegetation  

Type Name 

7010 Northern Rocky Mountain Western Larch Savanna Conifer Western Larch Forest and Woodland 

7045 Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest Conifer 
Douglas-fir-Ponderosa Pine-Lodgepole Pine 

Forest and Woodland 

7046 Northern Rocky Mountain Subalpine Woodland and Parkland Conifer Subalpine Woodland and Parkland 

7047 Northern Rocky Mountain Mesic Montane Mixed Conifer Forest Conifer 
Douglas-fir-Grand Fir-White Fir Forest and 

Woodland 

7049 Rocky Mountain Foothill Limber Pine-Juniper Woodland Conifer Limber Pine Woodland 

7050 Rocky Mountain Lodgepole Pine Forest Conifer Lodgepole Pine Forest and Woodland 

7053 Northern Rocky Mountain Ponderosa Pine Woodland and Savanna Conifer Ponderosa Pine Forest, Woodland and Savanna 

7055 Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland Conifer Spruce-Fir Forest and Woodland 

7056 Rocky Mountain Subalpine Mesic-Wet Spruce-Fir Forest and Woodland Conifer Spruce-Fir Forest and Woodland 

7057 Rocky Mountain Subalpine-Montane Limber-Bristlecone Pine Woodland Conifer Limber Pine Woodland 

7062 Inter-Mountain Basins Curl-leaf Mountain Mahogany Woodland Conifer Mountain Mahogany Woodland and Shrubland 

7165 Northern Rocky Mountain Foothill Conifer Wooded Steppe Conifer Douglas-fir Forest and Woodland 

7166 Middle Rocky Mountain Montane Douglas-fir Forest and Woodland Conifer Douglas-fir Forest and Woodland 

7167 Rocky Mountain Poor-Site Lodgepole Pine Forest Conifer Lodgepole Pine Forest and Woodland 

7179 
Northwestern Great Plains-Black Hills Ponderosa Pine Woodland and 

Savanna 
Conifer Ponderosa Pine Forest, Woodland and Savanna 

7193 Recently Logged-Tree Cover Conifer Transitional Forest Vegetation 

7197 Recently Burned-Tree Cover Conifer Transitional Forest Vegetation 

7200 Recently Disturbed Other-Tree Cover Conifer Transitional Forest Vegetation 

7061 Inter-Mountain Basins Aspen-Mixed Conifer Forest and Woodland Conifer-Hardwood Aspen-Mixed Conifer Forest and Woodland 

7009 Northwestern Great Plains Aspen Forest and Parkland Hardwood Aspen Forest, Woodland, and Parkland 

7011 Rocky Mountain Aspen Forest and Woodland Hardwood Aspen Forest, Woodland, and Parkland 

7161 Northern Rocky Mountain Conifer Swamp Riparian Spruce-Fir Forest and Woodland 

9019 Rocky Mountain Lower Montane-Foothill Riparian Woodland Riparian Western Riparian Woodland and Shrubland 

9022 Rocky Mountain Subalpine-Montane Riparian Woodland Riparian Western Riparian Woodland and Shrubland 

 



Table 2. Definitions for variables in final model for predicting dusky grouse occurrence. 

Variable EVT code Definition 
Vegetation 

Physiognomy 

Relationship 

Form 
Direction 

SE facing aspect N/A 
Proportion of southeast facing aspect within a circle 

with a 250m radii 
N/A linear positive 

W facing aspect N/A 
Proportion of west facing aspect within a circle with a 

250m radii 
N/A linear positive 

Distance to stream N/A 
Average distance to nearest stream (km2) within a circle 

with a 250m radii 
N/A 

nonlinear: 

quadratic 

positive,  

then negative 

Foothill Conifer 

Wooded Steppe 
EVT 7165 

Proportion of northern rocky mountain foothill conifer 

wooded steppe within a circle with a 250m radii 
Conifer 

nonlinear: 

quadratic 

positive,  

then negative 

Montane Foothill 

Deciduous Shrubland 
EVT 7106 

Proportion of northern rocky mountain montane-foothill 

deciduous shrubland within a circle with a 250m radii 
Shrubland 

nonlinear: pseudo-

linear threshold 
positive 

Montane Sagebrush 

Steppe 
EVT 7126 

Proportion of inter-mountain basins montane sagebrush 

steppe within a circle with a 250m radii 
Shrubland 

nonlinear: pseudo-

linear threshold 
positive 

Tree Height 1–5m N/A 
Proportion of trees with a height of 1–5m within a circle 

with a 250m radii 
N/A 

nonlinear: pseudo-

linear threshold 
negative 

Tree Height 16–20m N/A 
Proportion of trees with a height of 16–20m within a 

circle with a 250m radii 
N/A 

nonlinear: pseudo-

linear threshold 
positive 

   



Table 3. Slope estimates for all terms in the final habitat model. 

Variable 
Estimated 

slope (βi) 

Lower 95% 

Confidence 

Interval 

Upper 95% 

Confidence 

Interval 

SE Facing Aspect 1.65 0.27 3.03 

W Facing Aspect 1.24 -0.08 2.55 

Distance to Stream 7.28 3.15 11.42 

Distance to Stream2 -7.49 -12.81 -2.16 

Foothill Conifer Wooded Steppe 150.90 87.13 214.66 

Foothill Conifer Wooded Steppe2 -4167.49 -4679.10 -3655.89 

ln(Montane Foothill Deciduous Shrubland + 0.001) 0.11 -0.01 0.23 

ln(Montane Sagebrush Steppe + 0.001) 0.16 0.05 0.28 

ln(Tree Height 1–5m + 0.001) -0.63 -1.10 -0.16 

ln(Tree Height 16–20m + 0.001) 0.46 0.31 0.61 

 

Table 4. Estimated area (km2) of potential dusky grouse habitat for Montana FWP administrative 

regions. 

FWP Region Low Medium-Low Medium Medium-High High 

1 1,153.55 902.17 3,932.67 15,808.03 12,741.47 

2 706.39 1,182.19 3,926.91 10,155.55 11,339.43 

3 1,503.85 5,506.59 17,252.15 14,713.92 11,132.53 

4 13,622.27 17,555.62 26,156.98 8,409.75 5,618.86 

5 10,608.90 12,917.97 16,297.33 3,683.91 2,144.29 

6 17,084.72 26,783.38 28,031.36 475.94 102.07 

7 22,402.91 29,859.39 26,485.17 323.19 15.90 

 

Table 5. Summary of spring 2021 survey site data for each FWP regions 1–4. The observed total 

population is the total number of dusky grouse observed or detected during the surveys. The 

maximum number of observed dusky grouse from the 4 repetitions from each survey site was 

used to calculate total observed population. The number of sites and percent of sites where dusky 

grouse were observed is presented, but dusky grouse could have been present at other survey 

sites and not been detected. 

Region # of Survey 

Points 

Observed total 

population 

# of sites where 

observed 

% of sites 

where observed 

Region 1 309 25 23 7.4 

Region 2 320 73 57 17.8 

Region 3 353 70 53 15.0 

Region 4 309 21 20 6.5 

     



 

Table 6. The maximum number of dusky grouse observed at each survey site over the four 

repetitions for FWP regions 1–4. Tallies for Region 5 were unavailable at the time of this report. 

Region The maximum number of dusky grouse observed at each survey site 

0 1 2 3 4 

Region 1 286 21 1 0 0 

Region 2 263 43 13 0 1 

Region 3 300 39 12 1 1 

Region 4 289 19 1 0 0 

 

Table 7. Average number of dusky grouse detected per point count survey during the 2020 spring 

survey period for each FWP region survey (Regions 1–4). Tallies for Region 5 were unavailable 

at the time of this report. 

Region Average Standard Deviation 

Region 1 0.08 0.30 

Region 2 0.23 0.54 

Region 3 0.20 0.53 

Region 4 0.07 0.26 

 

 Table 8. Slope coefficients for the continuous survey condition variables: Temperature (C°), 

average wind speed (km/hr), minutes since sunrise, and day since survey period started (April 

10th = day 0). 

Variable 
Estimated 

slope (βi) 

Lower 95% 

Confidence 

Interval 

Upper 95% 

Confidence 

Interval 

Temperature 0.021 -0.008 0.049 

Average Wind Speed -0.055 -0.128 0.012 

Minutes Since Sunrise 0.008 0.003 0.015 

Minutes Since Sunrise2 -0.00003 -0.00005 -0.00001 

Day Since Survey Period Started 0.242 0.157 0.334 

Day Since Survey Period Started2 -0.004 -0.005 -0.002 

 

 

 

 

 

 



Table 9. Means parameterization for the categorical survey condition variables.  

Variable Estimate Standard Error 

Cloud Cover: 0-15% -5.93 0.85 

Cloud Cover:16-50% -6.82 0.88 

Cloud Cover: 51-80% -7.03 0.89 

Cloud Cover: 81-100% -6.56 0.86 

Precipitation: Fog -5.93 0.85 

Precipitation: None -5.96 0.77 

Precipitation: Rain -5.92 0.84 

Precipitation: Snow -6.31 0.89 

 

 



 

Figure 1. Examples of a pseudo-threshold (A) nonlinear relationship, a linear (B) relationship, 

and a quadratic (C) nonlinear relationship.  



 

Figure 2: Example of a GAM plot where a variable showed no relationship with dusky grouse 

detection. 

 

 

Figure 3. A histogram of the area under the curve (AUC) values for when we used receiver 

operating characteristics (ROC) and cross validation of the IMBCR dataset to evaluate model 

performance. 



 

Figure 4. Proportion of dusky grouse locations in five bins of increasing resource selection 

function values that we used to train (n = 132) and test (n = 132) our model of relative habitat 

suitability. A good predictive model will assign most of the training and test dusky grouse 

locations to med-high or high categories of predicted use.  



 

Figure 4. Predictive map of habitat suitability for dusky grouse for central and western Montana. This model has high predictive 

accuracy with a mean ROC of 0.89 (95% CI: 0.84–0.93). The geospatial datasets used to create this map included digital elevation 

layers, Montana spatial data hydrography datasets, and LANDFIRE vegetation datasets. Warmer colors (green-red) represent areas of 

higher relative use.   



 

Figure 5. Predicted number of dusky grouse detected with 95% confidence interval during a point count as a minutes since sunrise 

under different precipitation and cloud cover conditions.  A = 0–15% cloud cover, B = 16–50% cloud cover, C = 51–80% cloud cover, 

and D = 81–100% cloud cover



 

 

Figure 6. Predicted number of dusky grouse detected with 95% confidence intervals during a point count as a function of days since 

the start of the survey period (Day 0 = April 10th) under different precipitation and cloud cover conditions.  A = 0–15% cloud cover, B 

= 16–50% cloud cover, C = 51–80% cloud cover, and D = 81–100% cloud cover
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