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Abstract
1.	 Migration	evolved	as	a	behavior	to	enhance	fitness	through	exploiting	spatially	and	
temporally	variable	resources	and	avoiding	predation	or	other	threats.	Globally,	
landscape	alterations	have	 resulted	 in	declines	 to	migratory	populations	across	
taxa.	Given	the	long	time	periods	over	which	migrations	evolved	in	native	systems,	
it	 is	 unlikely	 that	 restored	populations	 embody	 the	 same	migratory	 complexity	
that	existed	before	population	reductions	or	regional	extirpation.

2.	 We	 used	 GPS	 location	 data	 collected	 from	 209	 female	 bighorn	 sheep	 (Ovis 
canadensis)	 to	 characterize	 population	 and	 individual	 migration	 patterns	 along	
elevation	and	geographic	continuums	for	18	populations	of	bighorn	sheep	with	
different	management	histories	(i.e.,	restored,	augmented,	and	native)	across	the	
western	United	States.

3.	 Individuals	 with	 resident	 behaviors	 were	 present	 in	 all	 management	 histories.	
Elevational	migrations	were	the	most	common	population‐level	migratory	behav‐
ior.	There	were	notable	differences	in	the	degree	of	individual	variation	within	a	
population	across	the	three	management	histories.	Relative	to	native	populations,	
restored	 and	 augmented	populations	had	 less	 variation	 among	 individuals	with	
respect	to	elevation	and	geographic	migration	distances.	Differences	in	migratory	
behavior	were	most	pronounced	for	geographic	distances,	where	the	majority	of	
native	populations	had	a	range	of	variation	that	was	2–4	times	greater	than	re‐
stored	or	augmented	populations.

4. Synthesis and applications.	Migrations	within	native	populations	include	a	variety	
of	patterns	that	translocation	efforts	have	not	been	able	to	fully	recreate	within	
restored	and	augmented	populations.	Theoretical	and	empirical	research	has	high‐
lighted	the	benefits	of	migratory	diversity	in	promoting	resilience	and	population	
stability.	Limited	migratory	diversity	may	serve	as	an	additional	factor	limiting	de‐
mographic	performance	and	range	expansion.	We	suggest	preserving	native	sys‐
tems	with	intact	migratory	portfolios	and	a	more	nuanced	approach	to	restoration	
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1  | INTRODUC TION

Seasonal	migration	has	evolved	as	a	complex	behavior	 to	enhance	
fitness	 and	 results	 from	 interactions	 between	 individuals	 (e.g.,	
learned	behavior),	their	genes,	and	the	environment,	notably	spatio‐
temporal	variation	in	resources	and	interspecific	threats	(e.g.,	preda‐
tion;	Dingle	&	Drake,	2007;	Fryxell	&	Sinclair,	1988;	Hebblewhite	&	
Merrill,	2009).	Migration	is	widespread	across	taxonomic	groups	and	
increasingly	recognized	as	fundamental	to	maintaining	populations	
and	communities	through	effects	on	population	productivity	and	the	
lateral	transport	of	nutrients	within	and	across	ecosystems	(Bolger,	
Newmark,	Morrison,	&	Doak,	2008;	Helfield	&	Naiman,	2001;	Holdo,	
Holt,	Sinclair,	Godley,	&	Thirgood,	2011;	Milner‐Gulland,	Fryxell,	&	
Sinclair,	 2011;	 Sawyer,	 Middleton,	 Hayes,	 Kauffman,	 &	Monteith,	
2016).	Moreover,	 identifying	and	conserving	migration	corridors	 is	
an	important	management	priority	for	state	(WYGF,	2016)	and	fed‐
eral	(USDOI,	2018)	agencies,	and	noted	as	one	of	the	most	difficult	
conservation	challenges	of	the	21st	century	(Berger,	2004).

Globally,	 habitat	 loss,	 barriers	 along	migratory	 routes,	 overex‐
ploitation,	 and	 climate	 change	 have	 resulted	 in	 steep	 declines	 of	
migratory	 behavior,	 and	 for	many	 species,	 subsequent	 population	
declines	 (Bolger	 et	 al.,	 2008;	Milner‐Gulland	 et	 al.,	 2011;	Wilcove	
&	Wikelski,	2008).	The	loss	of	migration	spans	nearly	all	taxonomic	
groups	and	has	important	implications	across	multiple	biological	lev‐
els	of	organization	as	well	as	direct	relevance	to	economic	and	so‐
cial	concerns	(Harris,	Thirgood,	Hopcraft,	Cromsigt,	&	Berger,	2009;	
Wilcove,	2010).	Once	lost,	restoring	migrations	has	been	met	with	
limited	success,	as	the	source	of	the	initial	extirpation	(e.g.,	habitat	
loss	or	fragmentation)	can	persist	on	the	landscape	(Wilcove,	2010).	
Although	a	few	hopeful	examples	have	shown	some	capacity	to	re‐
store	migrations	after	mitigating	impediments	to	animal	movement,	
the	 gains	 generally	 come	 at	 high	 economic	 costs	 and	 represent	 a	
diminished	 resemblance	 of	 historic	 migratory	 patterns	 (Bartlam‐
Brooks,	Bonyongo,	&	Harris,	2011;	Ellis	et	al.,	2003).

Bighorn	sheep	(Ovis canadensis)	are	an	iconic	mountain	ungulate	
that	occur	throughout	western	North	America	but	have	struggled	
to	rebound	to	historic	numbers	and	distributions	after	overharvest	
and	the	introduction	of	non‐native	respiratory	pathogens	from	do‐
mestic	livestock	(Buechner,	1960;	Cassirer	et	al.,	2017).	While	res‐
toration	efforts	have	resulted	in	modest	increases	in	abundance	and	
distribution,	bighorn	sheep	occupy	a	small	fraction	of	their	former	
range	and	occur	predominantly	 in	 restored	populations	 that	num‐
ber	fewer	than	100	individuals	(Buechner,	1960;	Singer,	Papouchis,	

&	Symonds,	2000).	Throughout	their	range,	previous	studies	have	
documented	 varied	 migratory	 behaviors	 from	 resident	 to	 long‐
distant	 migrants	 involving	 all	 or	 a	 subset	 of	 individuals	 within	 a	
population	 (i.e.,	 partial	migration;	Hurley,	 1985;	Woolf,	O'Shea,	&	
Gilbert,	1970;	Martin,	1985;	DeCesare	&	Pletscher,	2006;	Sawyer	
et	al.,	2016;	Courtemanch,	Kauffman,	Kilpatrick,	&	Dewey,	2017).	
Migratory	 movements	 clearly	 influence	 other	 large	 ungulates	
(Bolger	 et	 al.,	 2008;	 Sawyer,	 Kauffman,	 Nielson,	 &	 Horne,	 2009;	
Tucker	 et	 al.,	 2018;	 White,	 Davis,	 Barnowe‐Meyer,	 Crabtree,	 &	
Garrott,	2007)	 and	are	positively	 associated	with	 restoration	 suc‐
cess	(Singer	et	al.,	2000),	yet	our	current	understanding	of	bighorn	
sheep	migration	largely	stems	from	management	surveys	or	limited	
tracking	 of	 animals	 instrumented	 with	 VHF	 collars	 sampled	 from	
single	populations.

Bighorn	sheep	are	particularly	interesting	for	studies	of	migration	
because	of	the	widespread	use	of	translocations	as	a	management	
strategy	 to	 expand	distributions	 into	 historic	 ranges	 and	 augment	
existing	populations	(Singer	et	al.,	2000;	Wild	Sheep	Working	Group,	
2015).	As	of	2015,	nearly	1,500	restoration	efforts	resulted	in	the	
translocation	of	more	than	21,500	bighorn	sheep	in	North	America	
(Brewer	et	al.,	2014).	Recent	comparisons	across	restored	and	native	
populations	of	bighorn	sheep	indicate	that	migration	is	likely	socially	
learned	 and	 culturally	 transmitted	 (Jesmer	 et	 al.,	 2018).	 Restored	
populations	containing	individuals	that	were	translocated	into	novel	
environments	were	less	migratory	than	native	populations	that	had	
maintained	a	continuous	presence	on	the	landscape	and	developed	
population	“knowledge”	of	the	surrounding	environment	(Jesmer	et	
al.,	2018).	These	findings	contribute	important	insights	regarding	the	
evolution	 of	migration	 in	 ungulates,	 yet	 population	 and	 individual	
migratory	 patterns	 across	 the	 varied	 histories	 (e.g.,	 restored,	 aug‐
mented,	native)	are	largely	undescribed.

We	 used	GPS	 location	 data	 to	 describe	 population	 and	 indi‐
vidual	 migration	 patterns	 along	 elevation	 and	 geographic	 gra‐
dients	 among	 native,	 augmented,	 and	 restored	 bighorn	 sheep	
populations	across	the	western	United	States.	We	predicted	that	
the	differences	 in	 landscape	 “knowledge”	 between	management	
histories	 (e.g.,	 restored,	 augmented,	native)	would	 result	 in	pop‐
ulation	and	 individual	 differences	 in	migration	behaviors.	Native	
populations	embody	a	longer	period	over	which	generations	have	
had	the	opportunity	to	discover	and	exploit	landscape	resources,	
and	 develop	 multiple	 migratory	 behaviors	 across	 varied	 spatial	
scales	that	confer	similar	individual	fitness.	Consequently,	we	hy‐
pothesized	that	the	continuous	inhabitance	of	native	populations	

and	augmentation	in	which	source	populations	are	identified	based	on	a	suite	of	
criteria	that	includes	matching	migratory	patterns	of	source	populations	with	local	
landscape	attributes.

K E Y W O R D S

augmentation,	conservation,	individual	heterogeneity,	migration,	migratory	diversity,	portfolio	
effects,	resource	tracking,	restoration,	translocation
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would	 result	 in	 longer	migrations	 over	 elevation	 and	 geographic	
continuums	with	more	variation	in	migratory	patterns	among	indi‐
viduals.	 In	contrast,	we	hypothesized	that	migrations	within	aug‐
mented	 and	 restored	 populations	would	 be	 limited	with	 respect	
to	elevation	and	geographic	distances	and	exhibit	 less	 individual	
variation	in	migratory	patterns.	Our	approach	represents	a	broad	
empirical	characterization	of	seasonal	migration	in	bighorn	sheep	
and	 provides	 an	 evaluation	 of	 translocation	 efforts	 in	 restoring	
seasonal	migrations	in	areas	where	bighorn	sheep	were	locally	ex‐
tirpated	or	greatly	reduced.

2  | MATERIAL S AND METHODS

2.1 | Study areas

Our	 study	 populations	 were	 broadly	 distributed	 across	 Montana,	
Wyoming,	 Idaho,	 and	 Colorado	 in	 the	 western	 United	 States	

(Figure	1).	Within	each	state,	we	used	winter	capture	 locations	 to	
group	individuals	into	population	units,	which	generally	adhered	to	
regional	management	units	 (i.e.,	 state	hunting	districts	 or	 national	
park	boundaries;	Appendix	S1).	We	used	population	histories	to	clas‐
sify	study	populations	as	native,	augmented,	or	 restored	 (Table	1).	
Native	populations	were	never	extirpated	or	augmented	and	main‐
tained	a	constant	evolutionary	history	on	the	landscape.	Augmented	
populations	retained	a	native	component	that	was	bolstered	through	
translocations	because	of	concerns	over	long‐term	persistence	and	
low	abundance.	Population	estimates	for	 the	remnant	native	com‐
ponent	prior	 to	 receiving	 translocations	are	not	well	documented,	
but	generally	represent	a	greatly	reduced	relic	of	historic	distribu‐
tion	and	abundance	(Montana	Fish	Wildlife	&	Parks,	2010).	Restored	
populations	were	within	historic	bighorn	sheep	range,	but	created	
through	translocations	after	the	native	component	was	extirpated.	
For	restored	or	augmented	study	populations,	the	cause	of	the	initial	
extirpation	or	decline	was	not	specifically	documented.	Nonetheless,	

F I G U R E  1  Native	(red;	N	=	7),	
augmented	(blue;	N	=	4),	and	restored	
(green;	N	=	7)	population	units	used	
to	characterize	female	bighorn	sheep	
migration	patterns,	Montana,	Wyoming,	
Idaho,	and	Colorado,	USA,	2008−2017
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the	introduction	of	exotic	pathogens	from	domestic	animals,	compe‐
tition	with	domestic	 livestock,	and	overharvest	are	widely	cited	as	
the	known	mechanisms	resulting	in	the	drastic	declines	in	regional	
bighorn	sheep	distribution	and	abundance	in	the	early‐	to	mid‐1900s	
(Buechner,	1960;	Montana	Fish,	Wildlife,	&	Parks,	2010;	Singer	et	al.,	
2000).	There	are	no	records	indicating	the	loss	of	migratory	routes	
as	an	initial	cause	of	decline	in	any	study	population.

Phenological	 patterns	 and	 landscape	 heterogeneity	 are	 im‐
portant	drivers	of	migratory	behavior	 in	ungulates	 (Hsiung,	Boyle,	
Cooper,	&	Chandler,	2018;	Merkle	et	al.,	2016;	Smolko,	Kropil,	Pataky,	
Veselovská,	&	Merrill,	2018)	and	were	similar	across	all	study	areas	
(Appendix	S2).	All	populations	were	located	in	contiguous	mountain‐
ous	 landscapes	within	temperate	 latitudes	and	experienced	strong	
seasonal	variation	in	annual	climate	and	spatiotemporal	variation	in	
resource	availability	and	quality.	Land	ownership	was	dominated	by	
federally	managed	lands	with	nearly	all	populations	within	or	directly	
adjacent	to	designated	Wilderness	areas	or	National	Parks.	Winter	
months	 were	 characterized	 by	 cold	 temperatures	 with	 moisture	
predominantly	occurring	as	snow,	whereas	summer	was	character‐
ized	by	relatively	warm	temperatures	with	plant	phenology	advanc‐
ing	from	low	to	high	elevations.	All	study	areas	experienced	green	
waves	of	newly	emergent	vegetation	that	advanced	from	low	to	high	
elevations	over	a	2‐month	period	and	a	minimum	of	1,360	m	of	topo‐
graphic	 relief	 (Appendix	S2).	High	elevations	 contained	alpine	and	
subalpine	flora,	mid‐elevations	were	predominantly	characterized	by	
mixed‐coniferous	forests,	and	low	elevations	consisted	of	a	mosaic	
of	shrub	communities	and	agriculture	production.

Estimates	 of	 population	 size	 varied	 across	 the	 three	 manage‐
ment	 histories	with	 native	 populations	 being	 larger	 than	 restored	
or	augmented	populations	on	average	(Appendix	S3).	Translocation	
histories	 also	 varied	 among	 restored	 and	 augmented	 populations.	
On	 average,	 augmented	 populations	 received	 more	 translocated	
individuals	 and	had	more	 translocation	 events	 than	 restored	pop‐
ulations,	although	there	was	notable	variability	in	the	translocation	
histories	among	augmented	populations	(Appendix	S3).	In	addition,	
the	number	of	years	since	animals	were	 initially	 translocated	 is	an	
important	population	characteristic	in	the	context	of	learned	migra‐
tion.	Restored	and	augmented	populations	had	similar	translocation	
timing	with	an	average	of	34	(SD	=	12.7)	and	46	(SD	=	12.3)	years,	
respectively,	 since	 the	 initial	 translocation	 (Appendix	S3).	 The	use	
of	migratory	or	partially	migratory	source	populations	was	the	most	
common	translocation	strategy	(Appendix	S3).

All	populations	contained	a	suite	of	native	carnivore	species,	in‐
cluding	black	bears	(Ursus americanus),	coyotes	(Canis latrans),	moun‐
tain	 lions	 (Puma concolor),	 bobcats	 (Lynx rufus),	 and	 golden	 eagles	
(Aquila chrysaetos).	Excluding	Colorado,	Idaho,	and	the	Petty	Creek	
and	Lost	Creek	populations	 in	Montana,	grizzly	bears	 (Ursus arctos 
horribilis)	were	also	present.	Wolves	(Canis lupus)	were	present	in	all	
study	 areas	outside	of	Colorado.	Most	bighorn	 sheep	populations	
were	 sympatric	 with	 one	 or	 more	 additional	 ungulates,	 including	
mule	 deer	 (Odocoileus hemionus),	white‐tailed	 deer	 (Odocoileus vir‐
ginianus),	 elk	 (Cervus canadensis),	 and	 mountain	 goats	 (Oreamnos 
americanus).

2.2 | Data collection and seasonal migration 
characterizations

Animal	capture	occurred	between	2008	and	2017.	We	used	ground	
darting,	 drop	 nets,	 and	 helicopter	 net‐gunning	 to	 capture	 adult	
(>1	year	old)	female	bighorn	sheep,	primarily	during	winter	months.	
Animals	were	 instrumented	with	 store‐on‐board	or	 remote	down‐
load	GPS	collars	programmed	to	record	locations	at	varied	intervals	
ranging	from	1	to	13	hr.	Where	metrics	were	provided	by	the	GPS	
collar	manufacturer,	we	censored	GPS	locations	with	an	HDOP	>	10	
(D'eon	&	Delparte,	2005)	and	a	horizontal	error	>100	m.	We	then	
randomly	selected	a	single	location	per	animal	for	each	day	to	ensure	
an	equal	fix	rate	across	individuals	and	populations.

We	 characterized	 seasonal	 migrations	 between	 summer	 and	
winter	core	ranges.	We	defined	core	ranges	using	the	location	data	
collected	from	15	January	to	28	February	and	15	July	to	15	August	
for	winter	and	summer,	 respectively.	We	defined	 the	core	periods	
to	ensure	that	 individuals	would	be	within	the	respective	seasonal	
range	and	accommodate	the	varied	capture	schedules	across	pop‐
ulations.	We	censored	 individuals	with	fewer	than	10	days	of	GPS	
locations	within	 either	 core	 seasonal	 period.	 In	 the	 few	 instances	
where	we	had	multiple	years	of	data	for	an	individual,	we	selected	
core	 seasonal	 ranges	 from	 the	 first	 year's	data	 that	 included	both	
the	winter	and	summer	periods	and	excluded	data	from	subsequent	
years.	 We	 characterized	 geographic	 distance	 by	 measuring	 the	
Euclidian	distance	between	centroids	(mean	coordinates)	of	the	GPS	
locations	collected	within	 the	 respective	core	seasonal	 range	date	
interval.	We	characterized	elevational	distance	as	the	seasonal	dif‐
ference	between	the	mean	elevations	of	GPS	 locations	within	 the	
respective	 seasonal	 periods.	 Lastly,	we	 described	 population‐level	
migration	using	the	median	elevation	and	geographic	distance	and	
individual	 variation	within	a	population	according	 to	 the	10th	and	
90th	percent	distribution	quantiles	among	individuals.

3  | RESULTS

We	characterized	seasonal	migrations	for	209	female	bighorn	sheep	
across	18	populations	in	four	states	(Table	1).	We	obtained	data	for	
an	average	of	12	(range:	6–19)	individuals	per	population	with	native,	
augmented,	 and	 restored	 populations	 well	 distributed	 across	 the	
range	of	sample	sizes	(Table	1	and	Appendix	S3).	Although	we	gen‐
erally	 instrumented	slightly	more	 individuals	per	population	 in	na‐
tive	populations	than	in	restored	or	augmented	populations	(Table	1	
and	Appendix	S3),	the	slight	differences	in	sample	sizes	across	the	
management	histories	did	not	 influence	our	 results	 (Appendix	S4).	
Resident	 individuals	with	 little	to	no	elevation	and	geographic	dis‐
tance	between	core	seasonal	ranges	occurred	in	all	three	manage‐
ment	histories.	Seasonal	migrations	that	spanned	elevation	gradients	
(i.e.,	 elevational	migrations)	were	 the	most	common	migratory	be‐
havior	 with	 an	 average	 elevation	 difference	 of	 521	 m	 (±504	 SD),	
840	m	(±345	SD),	and	484	m	(±413	SD)	for	restored,	augmented,	and	
native	 populations,	 respectively.	Native	 populations	 had	 a	 greater	
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range	 of	 population‐level	 elevational	 migrations,	 which	 occurred	
over	 longer	 geographic	 distances	 in	 many	 populations	 (Figure	 2).	
The	average	geographic	migration	distances	were	6.5	km	(±5.1	SD),	
8.7	km	(±2.5	SD),	and	12.4	km	(±8.2	SD)	for	restored,	augmented,	and	
native	 populations,	 respectively.	While	 15	 and	 11	 km	marked	 the	
near‐maximum	 geographic	 distance	 of	 migration	 for	 restored	 and	
augmented	 populations,	 native	 populations	 tended	 to	 move	 over	
longer	geographic	distances,	including	a	maximum	median	distance	
of	27	km	(Figure	2).

There	were	notable	differences	 in	 individual	 variation	within	
a	 population	 among	 the	 three	 management	 histories.	 As	 pre‐
dicted,	 relative	 to	 native	 populations,	 restored	 and	 augmented	
populations	had	 less	variation	among	 individuals	with	 respect	 to	
elevation	 and	 geographic	 distance	 (Figures	 2	 and	 3).	 The	 differ‐
ences	were	most	pronounced	for	geographic	distances,	where	the	

majority	of	native	populations	had	a	 range	of	variation	between	
the	 90th	 and	 10th	 percent	 distribution	 quantiles	 that	 was	 2–4	
times	greater	than	in	restored	or	augmented	populations	(Figure	3	
and	Table	2).	Moreover,	individual	migrations	in	native	populations	
spanned	 a	 continuum	 of	 elevation	 and	 geographic	 distances.	 In	
contrast,	 rather	 than	 reflect	 a	 continuum	of	migratory	 behavior,	
the	 limited	variation	in	restored	and	augmented	populations	was	
driven	largely	by	the	resident	and	migrant	behaviors	characteristic	
of	partially	migratory	populations	(Figure	2	and	Appendix	S5).

4  | DISCUSSION

Our	study	presents	a	novel	and	broadscale	characterization	of	pop‐
ulation	 and	 individual	 migration	 behaviors	 of	 bighorn	 sheep	 from	

F I G U R E  2  Migration	characterizations	with	respect	to	elevation	and	geographic	distance	between	core	seasonal	ranges	for	restored	
(green),	augmented	(blue),	and	native	(red)	populations	of	female	bighorn	sheep,	in	Wyoming,	Montana,	Idaho,	and	Colorado,	2008−2017.	
Closed	circles	represent	population‐level	median	values.	Individual	variability	is	described	with	the	10th	and	90th	percent	distribution	
quantiles.	Populations	with	elevation	distances	below	zero	had	a	winter	range	that	was	higher	than	the	summer	range

F I G U R E  3  Range	of	variation	in	elevation	and	geographic	distances	among	individuals	within	each	of	the	18	restored,	augmented,	and	
native	bighorn	sheep	populations,	Wyoming,	Montana,	Idaho,	and	Colorado,	2008−2017.	Each	point	represents	the	difference	between	the	
90th	and	10th	percent	quantile	for	restored	(green),	augmented	(blue),	and	native	(red)	populations	of	female	bighorn	sheep
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restored,	augmented,	and	native	populations	using	metrics	of	eleva‐
tion	 and	 geographic	 distance	 between	 seasonal	 ranges.	 Although	
elevational	 migrations	 were	 common	 among	 all	 management	 his‐
tories,	 there	was	variation	 in	 the	distances	over	which	elevational	
migrations	 occurred.	 Migrations	 in	 native	 populations	 occurred	
over	 relatively	 long	 geographic	 distances	 and	 were	 characterized	
by	appreciable	variation	among	individuals	along	both	distance	con‐
tinuums	and	a	range	of	variation	that	was	up	to	four	times	greater	
than	restored	or	augmented	populations.	In	contrast,	the	migrations	
within	restored	and	augmented	populations	were	shorter,	especially	
with	respect	to	geographic	distance,	and	had	notably	less	variation	
among	 individuals	 within	 a	 population.	While	 restoration	 efforts,	
largely	through	translocations,	have	restored	elevational	migrations	
in	some	areas,	our	results	indicate	restoration	efforts	have	not	suc‐
cessfully	 restored	 long‐distance	migrations	or	 the	migratory	diver‐
sity	observed	in	native	populations.

Within	 the	 context	 of	 socially	 learned	 and	 culturally	 transmit‐
ted	migratory	behaviors	in	ungulates	(Jesmer	et	al.,	2018),	the	land‐
scape	“knowledge”	of	native	populations	represents	the	culmination	
of	a	 long	evolutionary	history	on	the	 landscape.	When	population	
knowledge	 is	eliminated	or	greatly	 reduced,	as	 in	 restored	or	aug‐
mented	populations,	the	result	is	not	only	a	reduction	in	migratory	
propensity	 (Jesmer	 et	 al.,	 2018),	 but	 a	 loss	 of	migratory	 diversity,	
inclusive	of	long‐distance	migrations.	The	successful	restoration	of	
elevational	migrations	may	be	aided	by	the	“green	wave”	of	newly	
emergent	vegetation	which	provides	an	enticing	guide	from	low‐el‐
evation	winter	 ranges	 to	high‐elevation	 summer	 ranges	 (Aikens	et	
al.,	2017)	and	is	commonly	tracked	by	large	herbivores	(Merkle	et	al.,	
2016).	In	contrast,	long‐distance	migrations	that	span	broad	spatial	
scales	and	traverse	complex	landscapes	are	not	easily	restored	once	
the	historic	population	knowledge	has	been	lost.

Although	the	importance	of	migratory	diversity	has	received	lit‐
tle	attention	 in	ungulates	 (but	see	Morrison,	Link,	Newmark,	Foley,	
&	 Bolger,	 2011),	 numerous	 theoretical	 and	 empirical	 works	 have	
highlighted	 the	 benefits	 of	 migratory	 diversity	 across	 other	 taxa	
(Schindler,	Armstrong,	&	Reed,	2015;	Webster,	Marra,	Haig,	Bensch,	
&	Holmes,	2002).	For	example,	within	anadromous	fishes,	a	portfolio	
of	varied	life‐history	traits	can	promote	increased	resilience,	stability,	
and	productivity	resulting	from	the	asynchronous	dynamics	among	

migratory	 individuals	 and	 reduce	 risk	 in	 a	 variable	 environment	
(Griffiths	et	al.,	2014;	Schindler	et	al.,	2010).	Similarly,	the	diffuse	spa‐
tial	arrangement	of	seasonal	ranges	in	populations	with	diverse	migra‐
tory	behaviors	can	increase	genetic	diversity	and	population	stability	
in	 long‐distance	avian	migrants	 (Finch,	Butler,	 Franco,	&	Cresswell,	
2016;	Webster	et	al.,	2002).	While	 restored	and	augmented	popu‐
lations	of	bighorn	sheep	were	able	to	develop	elevational	migrations	
and	have	some	tendency	to	maintain	a	partial	migration	(e.g.,	a	por‐
tion	of	the	population	migrates),	 the	reduced	migratory	diversity	 in	
these	populations	may	be	an	additional	factor	limiting	demographic	
performance.	Moreover,	because	seasonal	migration	can	functionally	
expand	 range	 capacity	 through	 behavior	 (Sawyer	 et	 al.,	 2016),	 the	
loss	 of	 historic	migration	 patterns	 in	 conjunction	with	 poor	 demo‐
graphic	performance	may	create	a	feedback	loop	where	populations	
remain	small	with	limited	range	expansion	over	time.

Given	 the	 widespread	 use	 of	 translocations	 in	 bighorn	 sheep	
management,	 comparisons	among	populations	with	different	man‐
agement	histories	provided	a	rare	opportunity	to	evaluate	the	effec‐
tiveness	of	translocation	efforts	in	restoring	migratory	patterns	and	
diversity	in	restored	and	augmented	populations	over	broad	spatial	
scales.	However,	although	our	study	areas	were	similar	with	respect	
to	many	 factors	 that	 influence	migration	 (Appendices	 S2	 and	 S3),	
we	were	not	 able	 to	 account	 for	 all	 potential	 differences	over	our	
broad	study	region.	For	example,	 local	responses	to	anthropogenic	
disturbance	 (Courtemanch	 et	 al.,	 2017;	 Sawyer	 et	 al.,	 2016),	 pop‐
ulation	density	 (Mysterud	et	 al.,	2011),	or	 the	migratory	behaviors	
of	 translocated	 individuals	 could	 all	 influence	 migratory	 diversity.	
Nonetheless,	 although	 the	 population‐specific	mechanisms	 driving	
individual	variation	 in	migratory	behavior	are	not	well	understood,	
increasing	migratory	diversity	may	serve	as	an	 important	objective	
for	 ungulate	management.	 Akin	 to	 the	 benefits	 observed	 in	 other	
taxa,	 increasing	migratory	diversity	 in	 ungulates	may	minimize	 the	
effects	of	disease	through	reducing	transmission	rates	and	densities	
on	 any	 single	 seasonal	 range	 (Lowrey	 et	 al.,	 2018;	Maichak	 et	 al.,	
2009;	Singer,	Zeigenfuss,	&	Spicer,	2001).	Moreover,	a	diffuse	distri‐
bution	also	can	buffer	individuals	from	other	density	mediated	limits	
to	 growth	 such	 as	 interspecific	 competition	 and	 predation	 (Leech,	
Jelinski,	DeGroot,	&	Kuzyk,	2017;	Lowrey	et	al.,	2018;	Singer	et	al.,	
2000)	as	well	as	stochastic	threats	such	as	avalanches	(Courtemanch	
et	al.,	2017).	Maintaining	or	promoting	migratory	diversity	can	also	
preserve	a	network	of	seasonal	ranges	making	populations	less	reli‐
ant	on	the	environmental	conditions	on	any	single	range	(Morrison	et	
al.,	2016).	At	present,	while	the	benefits	of	migratory	diversity	have	
largely	been	applied	to	migratory	fishes	and	birds,	 they	provide	an	
intuitive	lens	with	which	to	view	the	potential	benefits	of	maintaining	
and	promoting	diverse	migratory	portfolios	in	terrestrial	ungulates.

Migratory	behaviors	of	the	source	population	provide	additional	
insights	 that	 can	 inform	 translocation	 strategies	 and	 the	 contem‐
porary	assemblage	of	migratory	portfolios.	Although	the	migratory	
behaviors	of	translocated	individuals	are	not	generally	known,	migra‐
tory	behaviors	of	source	populations	are	often	documented	through	
historic	 reports,	 VHF	 monitoring,	 or	 GPS	 collar	 data.	 Migratory	
source	populations	have	been	associated	with	increased	restoration	

TA B L E  2  Average	(±	SD)	range	of	variation	for	restored,	
augmented,	and	native	management	histories,	Montana,	Wyoming,	
Idaho,	and	Colorado,	USA,	2008−2017

Management history

Average (± SD) range of variation

Elevation (m) Geography (km)

Restored 355.08	(262.05) 5.00	(3.18)

Augmented 491.13	(428.02) 8.86	(4.76)

Native 691.61	(210.65) 23.12	(10.85)

Note: The	range	of	variation	represents	the	difference	between	
the	90th	and	10th	percent	distribution	quantiles	for	elevation	and	
geographic	migration	distances	averaged	over	all	populations	within	a	
management	history.
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success	 in	ungulates	 (Singer	et	al.,	2000)	and	were	 the	most	com‐
mon	sources	among	our	study	populations.	We	had	a	limited	number	
of	resident	source	populations	and	were	unable	to	draw	definitive	
conclusions	regarding	the	effect	of	migratory	behavior	of	the	source	
population	on	contemporary	migratory	diversity.	However,	with	the	
exception	of	Petty	Creek,	all	populations	that	were	restored	with	in‐
dividuals	from	migratory	sources	had	a	migratory	component	(Figure	
S3.6	 and	Appendix	 S5).	 In	 contrast,	 Perma‐Paradise	was	 the	 only	
population	 that	 was	 restored	 from	 an	 exclusively	 resident	 source	
population,	and	the	translocation	effort	resulted	in	a	contemporary	
resident	 population	 (Figure	 S3.6	 and	Appendix	 S5).	 The	 tendency	
for	ungulates	translocated	from	resident	populations	to	retain	their	
resident	 behavior	 rather	 than	 develop	 seasonal	 migrations	 when	
placed	in	novel	mountain	environments	has	been	observed	in	other	
populations	 of	 bighorn	 sheep,	 moose	 (Alces alces),	 and	 woodland	
caribou	(Rangifer tarandus caribou;	Jesmer	et	al.,	2018;	Leech	et	al.,	
2017;	Warren,	Peek,	Servheen,	&	Zager,	1996)	and	may	lead	to	re‐
duced	 demographic	 performance	 (Wiedmann	 &	 Sargeant,	 2014).	
In	addition	 to	 forgoing	 the	possible	nutritional	benefits	associated	
with	migration,	 resident	populations	are	more	 likely	 to	experience	
detrimental	epizootics	resulting	from	higher	pathogen	transmission	
rates	on	 a	 single	 year‐round	 range	 (Singer	 et	 al.,	 2001).	Given	 the	
observed	 benefits	 of	 migratory	 behavior	 in	 bolstering	 restoration	
success	(Singer	et	al.,	2000),	we	suggest	using	migratory	source	pop‐
ulations	in	ungulate	restoration,	notwithstanding	local	management	
priorities	which	may	situationally	favor	a	resident	behavior.

As	GPS	 technology	continues	 to	enhance	our	ability	 to	 track	
and	map	animal	migrations,	there	are	an	increasingly	large	number	
of	seasonal	migrations	that	do	not	fit	within	traditional	definitions	
(Dingle	&	Drake,	2007).	Rather	than	adopt	a	dichotomous	classi‐
fication	 (e.g.,	 resident	or	migrant),	 seasonal	migrations	are	being	
increasingly	 interpreted	 along	 a	 behavioral	 continuum	 (Barker,	
Mitchell,	 Proffitt,	&	Devoe,	 2018;	Cagnacci	 et	 al.,	 2011;	 Sawyer	
et	 al.,	 2016).	 Our	 results	 expand	 on	 this	 approach	 through	 rec‐
ognizing	 not	 only	 variation	 in	 geographic	 distances,	 but	 also	
variation	 in	elevational	distances	within	and	among	populations.	
Evaluating	 migratory	 strategies	 along	 a	 continuum	 may	 provide	
additional	insights	when	describing	migratory	metrics	(e.g.,	timing)	
or	differences	 in	demographic	performance	among	 individuals	 in	
a	population.	For	example,	in	addition	to	examining	the	ecological	
(e.g.,	 spatial,	 temporal,	 demographic)	 differences	 between	 resi‐
dent	and	migratory	components	of	partially	migratory	populations	
(Hebblewhite	&	Merrill,	2009;	Middleton	et	al.,	2013;	Rolandsen	
et	al.,	2016),	the	characterization	of	multiple	migratory	behaviors	
within	a	population	may	help	to	explain	demographic	differences	
among	 subpopulation	 components	 with	 different	 migratory	 be‐
haviors	(Barker	et	al.,	2018;	Lowrey,	2018;	Sawyer	et	al.,	2016).

While	nearly	a	century	of	bighorn	sheep	restoration	has	resulted	
in	modest	 increases	 in	distribution	and	abundance,	 seasonal	migra‐
tions	 in	 restored	 and	 augmented	 populations	 do	 not	mirror	 the	 di‐
versity	 observed	 in	 native	 populations.	 Indeed,	 once	 lost,	 diverse	
migratory	portfolios	have	proven	difficult	to	restore.	With	the	contin‐
ued	increase	in	ecological	threats,	our	work	highlights	the	importance	

of	preserving	native	systems	with	intact	migratory	portfolios.	In	ad‐
dition,	we	suggest	a	more	nuanced	approach	to	restoration	and	aug‐
mentation	in	which	source	populations	are	identified	based	on	a	suite	
of	 criteria	 that	 includes	migration	 patterns.	While	 disease	 histories	
and	 the	presence	of	 respiratory	pathogens	are	becomingly	 increas‐
ingly	 important	 in	 informing	 translocations	 and	 restoration	 efforts	
(Butler	et	al.,	2017,	2018),	migration	patterns	of	source	populations	
are	 not	 often	 considered,	 yet	 are	 known	 to	 support	 translocation	
success	(Singer	et	al.,	2000).	Targeted	management	experiments	that	
more	directly	link	migration	patterns	of	source	populations	with	land‐
scape	attributes	 in	restored	areas	may	be	an	effective	tool	 to	build	
diversity	into	restored	or	augmented	ungulate	populations	(Warren	et	
al.,	1996).	While	individual	migratory	behaviors	are	often	not	known	
prior	to	translocations,	moving	individuals	from	migratory	populations	
into	landscapes	with	attributes	that	support	migratory	behavior	(e.g.,	
topographic	and	phenological	heterogeneity)	is	likely	the	best	option	
for	 managers	 trying	 to	 restore	 populations	 and	 bolster	 migratory	
diversity.	While	we	recognize	residency	as	a	situationally	 important	
management	 priority	 (e.g.,	 purposely	 minimizing	 range	 expansion),	
where	migratory	behavior	is	desired,	we	suggest	that	in	addition	to	in‐
creasing	abundance	and	distribution,	there	is	value	in	simultaneously	
increasing	migratory	diversity,	and	in	so	doing,	building	resilience	to	
future	perturbations	and	mirroring	the	migratory	portfolios	observed	
in	native	populations.	Lastly,	we	encourage	work	to	further	elucidate	
the	mechanisms	influencing	migratory	diversity	across	multiple	spa‐
tial	scales	and	the	potential	demographic	benefit	to	ungulates.
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