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White-Nose Syndrome (WNS) is awildlife disease that has decimated hibernating bats
since its introduction in North America in 2006. As the disease spreads westward, assess-
ing the potentially differential impact of the disease on western bat species is an urgent
conservation need. The statistical challenge is that the disease surveillance and species
response monitoring data are not co-located, available at different spatial resolutions,
non-Gaussian, and subject to observation error requiring a novel extension to spatially
misaligned regression models for analysis. Previous work motivated by epidemiology
applications has proposed two-step approaches that overcome the spatial misalignment
while intentionally preventing the human health outcome from informing estimation of
exposure. In our application, the impacted animals contribute to spreading the fungus
that causes WNS, motivating development of a joint framework that exploits the known
biological relationship. We introduce a Bayesian, joint spatial modeling framework that
provides inferences about the impact of WNS on measures of relative bat activity and
accounts for the uncertainty in estimation of WNS presence at non-surveyed locations.
Our simulations demonstrate that the joint model producedmore precise estimates of dis-
ease occurrence and unbiased estimates of the association between disease presence and
the count response relative to competing two-step approaches. Our statistical framework
provides a solution that leverages disparatemonitoring activities and informs species con-
servation across large landscapes. Stan code and documentation are provided to facilitate
access and adaptation for other wildlife disease applications.
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1. INTRODUCTION

Conservation decision-making relies on species distribution models (SDMs) to provide
spatially explicit predictions of species occurrence and inferences regarding species-habitat
associations with uncertainty. Static environmental variables, such as elevation, are readily
available as interpolated spatial surfaces with grid-based values and frequently included as
predictors in SDMs. However, adjusting inferences about species occurrence or abundance
relative to potential exposure to detrimental factors (e.g., disease vectors) often requires
quantification of stressors at unsampled locations. When the stressor is quantified on an
areal unit and the species response is measured at a point location, the different spatial
resolutions present as a change-of-support problem. The spatial misalignment requires an
approach that imputes or predicts the stressor variable at new areas while properly propagat-
ing the uncertainty in those predictions into the species responsemodel. Spatiallymisaligned
regression modeling (Banerjee et al. 2015, pp. 206–212), although more common in human
health exposure applications (Warren et al. 2012; Lee et al. 2015; Cameletti et al. 2019),
has not been used to assess a wildlife population response to a known disease. Our work is
motivated by White-Nose Syndrome (WNS) which has decimated North American hiber-
nating bats (U.S. Fish andWildlife Service 2012) and resulted in two species being proposed
for federal protection under the Endangered Species Act (U.S. Fish and Wildlife Service
2022b,a).

White-Nose Syndrome is a wildlife disease characterized by cutaneous infection dur-
ing hibernation caused by the cold-adapted fungus Pseudogymnoascus destructans (Pd;
Gargas et al. 2009; Lorch et al. 2011; Frick et al. 2015). The disease was first detected
in North America in New York, USA, in 2006 (Turner et al. 2011) and has since spread
to 40 states in the USA and eight Canadian provinces (Frank et al. 2019; WNS Response
Team 2023), resulting in millions of fatalities (U.S. Fish and Wildlife Service 2012) and
population declines exceeding 90% in several of the most susceptible species (Cheng et al.
2021). The disease presents as white fungal hyphae and lesions on the muzzle, wings,
and ears of afflicted bats (Gargas et al. 2009; Chaturvedi et al. 2010) and causes mortality
through disruption of torpor patterns during hibernation, leading to premature depletion of
fat reserves and subsequent death due to starvation (Reeder et al. 2012; Frank et al. 2019).
Studies documenting the decline in overwintering bat populations associated with WNS are
based on count-based cave surveys jointly conducted with sampling for Pd and WNS on
individual bats (Cheng et al. 2021). In order to measure Pd or document evidence of WNS,
bats need to be captured and handled or visually inspected. The challenge in the western
USA is that most of the susceptible bat species do not hibernate in known caves, mines, or
other locations that are accessible for winter survey (Blejwas et al. 2023). Consequently,
locating and capturing western bat species during hibernation, when their fungal loads are
greatest, is extremely challenging. As a result, obtaining a sufficient number of samples to
inform disease presence/absence at a given location is non-trivial (U.S. Geological Survey
2022).

In coordination with the US Fish andWildlife Service’s National White-Nose Syndrome
Response Plan (U.S. Fish and Wildlife Service 2011), the US Geological Survey’s National
Wildlife Health Center designed and implemented a national surveillance program in 2012
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to detect andmonitor the spread ofPd across the USA. The original continentalPd sampling
design was informed by a dynamic spatial diffusion model that identified high-risk areas
where Pd was predicted to have spread in a given season (U.S. Geological Survey 2019,
2022). The associated sampling design results in intensive data collection along the predicted
westward front of Pd spread. In the winter of 2021, a year after Pd was detected inMontana,
Montana FishWildlife, and Parks supplemented the continental design by creating a 36-cell
lattice to guide surveillance data collection efforts to ensure statewide coverage (Fig. 1).
Also in response to WNS, a separate and distinct collaborative monitoring program was
created in 2015 to track the status and temporal trajectories of bat populations across North
America, known as the North American BatMonitoring Program (NABat; Loeb et al. 2015).
The NABat plan defines a lattice of 10km × 10km grid cells and an associated generalized
random-tessellation stratified sampling design (GRTS, Stevens and Olsen 2003) to provide
a spatially balanced master sample (Fig. 1). The NABat program employs passive acoustic
recording units (ARUs) to measure relative bat activity during the pre-volant period (Loeb
et al. 2015). A collective of Montana state agencies, federal agencies, non-government
organizations, and tribal governments adopted the NABat design and have collaboratively
conducted ARU-based surveys at 87 grid cells across the state in June and July annually
since 2020 (Fig. 1). The best practices for integrating disease surveillance and population
monitoringdata at different spatial resolutions are notwell understood, andprevious attempts
have struggled to appropriately propagate error and quantify uncertainty (Merkle et al. 2018).
To our knowledge, this work is the first attempt to integrate data collected from a wildlife
disease surveillance program and a population monitoring program through a joint spatial
model to inform landscape conservation planning.

Previous data integration techniques in ecology constructed a joint likelihood composed
of independent probability distributions for each response-type conditional on a common
latent parameter(s), as in spatial data fusion or integrated SDM applications (Pacifici et al.
2017; Fletcher et al. 2019; Miller et al. 2019). For example, the latent species occurrence
state of an areal unit can be jointly informed by capture and point-count surveys (Miller et al.
2019). In contrast, when the goal of inference is to assess how a disease impacts a population
of interest, the parameter associated with the directional relationship between the exposure
and response is the parameter of interest (e.g., a regression coefficient). Inference on how
modeled quantities affect a response using regression tools is common in environmental
health applications that investigate how exposure to a toxin or air pollutant affects a human
population outcome (e.g., mortality or birth rates; Warren et al. 2012; Cameletti et al. 2019).
If the exposure and response data are collected at different spatial resolutions, such as the Pd
surveillance and acoustic monitoring of bats inMontana, techniques for spatiallymisaligned
regression must be considered.

A common approach tomisaligned regressionmodeling in the domain of human health is
the so-called plug-in method (Lee and Shaddick 2010; Lee et al. 2015; Pannullo et al. 2016;
Cameletti et al. 2019), in which the disease or exposure data are first modeled agnostic to
the observed response. Then, the response data are regressed on a fixed one-number sum-
mary of exposure, such as the posterior mean or median. The “plug-in” technique presents
a number of advantages: (1) It is easily accessible by practitioners and computationally
efficient (Cameletti et al. 2019), (2) it accommodates varying degrees of missing data and
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spatial misalignment between the disease and response variables, and (3) it models the expo-
sure independent from the response. In human health applications, the lack of connection
between the exposure and response models in the “plug-in” method is considered benefi-
cial. For example, Warren et al. (2012) noted that a joint model for air pollution and preterm
birth rates is not reasonable because human birth outcomes are not expected to influence the
quantity or distribution of airborne contaminates. In contrast, allowing bat activity to inform
the distribution of Pd is desirable because bats could influence the spread of the fungus to
environmentally suitable areas by dispersing Pd within a roost and transporting the fungus
to new roosts (Lorch et al. 2011; Warnecke et al. 2012; Wibbelt et al. 2010). Additionally,
the “plug-in” method does not propagate any of the uncertainty in estimation of exposure
through to the response model, resulting in potentially biased and overly precise estimates
of the association between the exposure and response (Cameletti et al. 2019).

Bayesian techniques for spatially misaligned regression use informative prior distribu-
tions to incorporate the uncertainty in predicting exposure at unsurveyed locations into the
response model. First the exposure data are modeled, which in our case is evidence of Pd or
WNS at one of the 36 cells in Montana (Fig. 1). Then, the exposure variable is specified as a
latent predictor within the response model with prior distributions informed by the posterior
distribution from the exposure model (Warren et al. 2012; Powell and Lee 2013; Lee et al.
2016; Cameletti et al. 2019). For example, Cameletti et al. (2019) used estimated posterior
distributions of air pollution exposure, represented as annual mean NO2 concentrations, as
prior distributions on the latent predictor variables in their response model describing hospi-
talizations. Similarly, Warren et al. (2012) used estimated posterior predictive distributions
of climate variables as prior distributions when modeling air pollution. Related methods
rely on fitting the response model multiple times, each time selecting a posterior sample
from the disease model as a fixed covariate, then combining parameter estimates from the
multiple fitted response models. For example, Cameletti et al. (2019) introduce the “feed-
forward” approach, in which J posterior samples are selected from the exposure model and
the response model is fit for each posterior sample. Similarly, Zhang et al. (2022) used mul-
tiple posterior samples from a COVID-19 exposure model as inputs in a mortality response
model. Relying on prior distributions for latent parameters in the response model informed
by the posterior distributions from the exposure model, hereafter the “prior” method, allows
for propagation of the uncertainty in the estimation of the exposure model through to the
response model.

When assessing the impact of Pd occurrence on Western bat populations, we propose
that a better solution is to specify a single integrated modeling framework that completely
captures the shared information between the Pd surveillance data and acoustic activity data.
We compare the “plug-in” and “prior” methods to a joint model using a simulation study
and empirical data in the state of Montana (Fig. 1). Specifically, our interest is whether a
single integrated modeling framework that fully propagates the uncertainty in estimation of
the wildlife disease model through to the ecological count model results in more accurate
and precise estimates of disease occurrence and appropriate uncertainty in estimation of
disease impacts on the ecological count response. In the following sections, we describe
development of a joint model that accommodates non-Gaussian responses, imperfect detec-
tion, and spatial misalignment. Then, we describe our joint model extension that addresses
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Figure 1. Data from both monitoring programs in 2021. The small grid cells represent sample locations from the
NABat acoustic monitoring program (Loeb et al. 2015) and are colored by the log of average count of recordings
per site-night within the cell. The large polygons represent the 36-cell lattice developed by MFWP and are colored
by the proportion of survey events positive for Pseudogymnoascus destructans (Pd) within the polygon. Most Pd
surveillance polygons received only a single sampling event, though some received as many as five. White fill
represents unsampled grid cells and polygons.

the nuances of the data available in Montana, including multiple years of data collection
and within-season temporal correlation among acoustic-based survey events. We provide
Stan code (Stan Development Team 2023b) and documentation (Stratton et al. 2023), such
that our method is accessible and adaptable for other ecological disease applications where
leveraging joint information shared by the exposure and the response could be advantageous.

2. METHODS

2.1. BAT POPULATION MONITORING USING ACOUSTIC-BASED SURVEYS

Between 2020 and 2022,Montana Fish,Wildlife, and Parks (MFWP), theMontana Natu-
ral Heritage Program (MTNHP), and other partner agencies conducted acoustic monitoring
of bats consistent with guidance from theNorth American BatMonitoring Program (NABat,
Loeb et al. 2015). The survey design defines the spatial domain of interest as the state ofMon-
tana, and an associated subset from the NABat master sample provides a spatially balanced
sample from the NABat grid (Fig. 1). Between 2020 and 2022, 87 grid cells were sampled
each year. Within each grid cell, an average of four ARUs (detectors) was deployed for an
average of four nights each; detectors were placed sufficiently far apart to minimize spatial
dependence among recorded calls from separate detectors (Loeb et al. 2015). Each detector
recorded echolocating bats between sunset and sunrise nightly, resulting in an average of
16 detector-night combinations (hereafter, site-nights) per grid cell.
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Acoustic recordings were assigned a species label using the SonoBat acoustic classifica-
tion software (Szewczak 2023); proposed species assignments and call sequence attributes
were derived from one of three regional classifiers to account for variations in community
composition across the state. In order to account for the potential false-positive and false-
negative detections that can result from using automated classification software (Chambert
et al. 2018), auto-classified species labels are often manually reviewed by experts prior
to analysis (Banner et al. 2018; Reichert et al. 2018). For the acoustic data collected in
Montana, manually verified species labels were not available for all call sequences as only
a subset of the calls collected were reviewed to confirm species presence at each detector
location and many call sequences were not identified to species by the classifier. To account
for the lack of robust species identifications, recordings were classified by whether the fre-
quency fell within the range of WNS-susceptible species, and analyses were conducted on
the recordings attributed to WNS-susceptible species in an attempt to remove false-positive
detections and restrict inference on the impact of WNS to onlyWNS-susceptible species. In
Montana, the majority of WNS-susceptible species are of the genus Myotis (Bachen et al.
2018). Attributes of call sequences from individuals of known species, archived within the
MTNHP’s bat call library, were used to determine a mean characteristic frequency thresh-
old that separatedMyotis bats from bats not susceptible to WNS. The frequency threshold,
34 kHz, was then used to restrict to recordings from only WNS-susceptible bats prior to
analysis.

2.2. Pseudogymnoascus destructans (Pd) SURVEILLANCE DATA

In 2019, MFWP began collaborating with the National Wildlife Health Center to imple-
ment Pd sampling (U.S. Geological Survey 2019, 2022), and Pd was first detected in the
eastern part of the state during the winter of 2020–2021. Beginning in 2021, MFWP broad-
ened its surveillance to include locations across the entire state in order to tie regional Pd
status to summertime trends in bat activity informed by acoustic monitoring. To facilitate
statewide monitoring within the constraint of finite resources, a 36-cell lattice of large rect-
angular polygons (hereafter, “Pd polygons”) was superimposed over the state, and the state
aimed to conduct at least one sampling event within each polygon each year (Fig. 1). How-
ever, 12, 22, and 29 polygons were sampled in 2020, 2021, and 2022, respectively. In Table
1, we categorize each of the 3983 acoustic monitoring grid cells in terms of the degree of
overlap between the acoustic and Pd data sources.

Within each polygon, local biologist expertise was used to identify hibernacula, spring
emergencemist-net sites, ormaternity roost sites for sampling; attemptsweremade to evenly
distribute the survey type, including hibernacula surveys, live animal trapping, or pooled
guano and environmental sampling, across the state. Hibernacula surveys involved swabbing
hibernating bats, cave substrates, or collecting soil and guano. Live animal trapping involved
early season mist-netting or trapping bats emerging from bat boxes between April and June.
Pooled guano surveys were conducted by collecting fresh guano at early season roost sites in
buildings, beneath bridges, or in bat boxes during spring emergence. Samples from all survey
types were then assessed for presence of Pd using polymerase chain reaction testing (PCR)
at either the National Wildlife Health Center or Oregon Veterinary Diagnostic Laboratory.
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Table 1. Count of NABat grid cells categorized by whether data were observed within the cell

Acoustic data available Pd data observed Count

2020 No No 2500
No Yes 1396
Yes No 59
Yes Yes 28

2021 No No 1416
No Yes 2480
Yes No 30
Yes Yes 57

2022 No No 768
No Yes 3128
Yes No 13
Yes Yes 74

Note that grid cells are not directly sampled for Pseudogymnoascus destructans (Pd); if a grid cell is contained
within a Pd polygon that is sampled for Pd, the grid cell is considered sampled for Pd

A survey event was considered positive if at least one sample from the survey event tested
positive for Pd.

2.3. SPATIALLY MISALIGNED REGRESSION MODELS

We consider three methods for estimating the association between Pd occurrence and
WNS-susceptible species bat relative activity: (1) the “plug-in,” (2) the “prior,” and (3) the
“joint.” To facilitate our discussion of these methods, we assume the following notation. Let
Ak , k = 1, . . . , K , denote the polygons defined for monitoring of Pd (i.e., 36-cell lattice
covering MT), xAk denote the probability of Pd occurrence in polygon Ak , and i[k] index
NABat grid cell i within polygon Ak ; NABat grid cells located on the boundaries of Pd
polygons were attributed to a single polygon by the area of greatest overlap. Let yk denote
the number of positive Pd sampling events out of nk events in polygonAk , Zi[k] denote the
latent occurrence state of WNS-susceptible species in grid cell i within polygon Ak , and
ci j[k] denote the observed count of recordings classified as any WNS-susceptible species at
grid cell i during visit j within polygon Ak . We assume a zero-inflated negative binomial
sampling model for WNS-susceptible species bat activity:

Zi[k] ∼ Bernoulli(ψi[k]),
ci j[k]|Zi[k] = zi[k] ∼ Negative binomial(zi[k]μi j[k], ξ) (1)

where logit(ψi[k]) = x(z)
i[k]β

(z), log(μi j[k]) = x(c)
i j[k]β

(c) + αxAk , the negative binomial
distribution is parameterized by its mean and variance (Stan Development Team 2023b),
and x(z)

i[k] and x(c)
i[k] denote vectors of covariates associated with occupancy and relative

activity at a site-night, respectively. We use superscripts on the coefficients
(
e.g.,β(c))

and associated covariates
(
e.g.,x(c)

i j[k]
)
to distinguish the responses with which they are

affiliated. The zero-inflation component accounts for potential false negatives arising from
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no recordings classified to WNS-susceptible species on any site-night even though at least
one species truly occurred within a grid cell (MacKenzie et al. 2002).

The ecological response model described in Eq. (1) requires specification of xAk , the
probability of Pd occurrence in polygonAk , in order to estimate α, the association between
the probability of Pd occurrence and the log-mean WNS-susceptible bat activity. While
the “plug-in,” “prior,” and “joint” methods differ in their propagation of the uncertainty in
estimation of xAk through to the ecological response model, they all rely on the same model
structure for evidence of Pd occurrence. Let yk denote the observed count of positive Pd
survey events from nk trials in polygon Ak and sk denote the centroid of the kth observed
Pd polygon. The model for Pd occurrence is:

yk ∼ Binomial
(
nk, x

A
k

)
,

logit(xAk ) = x(y)
k β(y) + ηk,

η ∼ N (0,�11) (2)

where the i th row and j th column of �11, denoted �
i j
11, is given by �

i j
11 = σ 2

exp
{
− 1

2φ2 ||si − s j ||2
}
. To obtain predictions of xAk in unsampled Pd polygons, we con-

sider the spatial random effects from observed polygons, η, and unobserved polygons, η∗, as
a multivariate normal process. Let s∗k denote the centroids of the unobserved Pd polygons.
Then,

[
η

η∗

]

∼ N
([

0
0

]

,

[
�11 �12

�21 �22

])

(3)

where �
i j
12 = σ 2 exp

{
− 1

2φ2 ||si − s∗j ||2
}
, �

i j
22 = σ 2 exp

{
− 1

2φ2 ||s∗i − s∗j ||2
}
, and �21 =

�T
12. Conditioning on the observed spatial random effects yields a multivariate normal dis-

tribution for unobserved random effects, with covariance matrix�2|1 = �22−�21�
−1
11 �T

21
and mean vector μ2|1 = �21�

−1
11 η (Eaton 1983, pp. 116–117).

In order to fully propagate the uncertainty in estimation of the disease model through
to the ecological response model and leverage shared information between the two data
sources, the proposed joint modeling framework estimates the ecological response model
described in Eq. (1) and the spatial model for disease occurrence described in Eq. (2)
simultaneously in a single hierarchical framework. Conversely, the “plug-in” method relies
on a two-step process. First, the disease surveillance data are modeled according to Eq.
(2) to obtain posterior summaries, such as the mean or median, of the probability of Pd
occurrence within polygonAk , denoted x̄Ak . Then, those summaries are included as a fixed

covariate in the ecological response model, log(μi j[k]) = x(c)
i j[k]β

(c) + α x̄Ak .
The “prior” method also relies on a two-step process, first modeling the disease occur-

rence according to Eq. (2) to obtain posterior distributions for xAk . However, rather than
using posterior summaries of xAk as a fixed covariate in the ecological response model, the
“prior” method treats these probabilities as unknown and specifies informative prior dis-
tributions based on the posterior distributions of xAk obtained from the model fit to the Pd
surveillance data. In the case of probabilities, one may use the mean-variance parameteri-
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zation of the beta distribution (Ferrari and Cribari-Neto 2004) as a prior distribution for the
latent probabilities. That is, let log(μi j[k]) = x(c)

i j[k]β
(c) + αxAk where

xAk ∼ beta(ak, bk), (4)

where ak = μkφk , bk = (1−μk)φk ,φk = μk (1−μk )

τ 2k
−1, andμk and τ 2k are the posteriormean

and variance of xAk from the diseasemodel, respectively (Eq.2). Similar to the jointmodeling
framework, this approach allows for propagation of the uncertainty in the estimation of xAk
through to the ecological response model.

2.4. SIMULATION STUDY

We conducted a simulation study to compare the three models (“plug-in,” “prior,” and
“joint”) with respect to estimation error and uncertainty in the posterior distributions for
two outcomes of interest: Pd occurrence probabilities

(
xAk

)
and the log-linear association

betweenPd occurrence and relative activity ofWNS-susceptible bat species (α).We consid-
ered three scenarios representing varying magnitudes for the negative association between
the evidence of the fungus and our measure of relative bat activity: “no effect” (α = 0),
“moderate effect” (α = −1), or “strong effect” (α = −3). For each of the three scenarios,
50 data sets were generated from the joint model described by Eqs. (1), (2), and (3) assum-
ing that nine polygons were randomly sampled for Pd and 100 grid cells were randomly
selected for bat population monitoring using acoustic recording devices. Selecting the joint
model as the generating mechanism allowed for investigating the impact of model choice
on parameter estimates regardless of whether the Pd occurrence and count processes were
associated by varying the value of α. The remaining assumed parameter values were based
on empirical estimates obtained fromfitting a simplified version of the fully specified “joint”
model to the Montana data assuming only one year of sampling and excluding the nested
random effect structure (see Sect. 2.5).

For each simulated data set, the “plug-in,” “prior,” and “joint” models were fit and pos-
terior mean estimates, 95% credibility intervals, whether those credibility intervals cap-
tured the data generating values, and the squared-error (SE) were tracked. For a posterior
mean probability of x̂Ak and true generating probability of xAk , the SE was calculated as
(
xAk − x̂Ak

)2. When summarizing the SE across all simulations, the square root of the mean
of SEs, RMSE, was considered. For the two-step approaches, the Pd occurrence model
described by Eqs. (2) and (3) was first fit to the simulated Pd data. Then, the ecological
response model described in Eq. (1) was fit to the simulated acoustic data, incorporating
posterior summaries of the disease occurrence probabilities in the linear predictor of the
count response. The “plug-in” method used posterior mean estimates of disease occurrence
probability as a covariate in themodel, while the “prior” method assumed these probabilities
were latent, relying on informed priors as described in Eq. (4). All models were fit using the
probabilistic programming language Stan (Stan Development Team 2023a) and assessed
for convergence with the Gelman–Rubin statistic (Brooks and Gelman 1998) and through
visual inspection of trace plots.
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2.5. DATA ANALYSIS

In order to estimate the association between Pd occurrence and bat activity between
2020 and 2022, the “plug-in,” “prior,” and “joint” modeling frameworks were fit to the data
described in Sects. 2.1 and 2.2. For both of the two-step modeling approaches, the same
iterative process described in Sect. 2.4 was used to incorporate estimates of Pd occurrence
probabilities into the ecological response models. All three methods included the same
covariates for the Pd

(
x (y)
k

)
and bat activity

(
x (c)
i j[k], x

(z)
i[k]

)
processes, allowing for direct

comparison between the methods.
The zero-inflation portion of each model included the mean elevation of the grid cell

(meters), the average annual precipitation in the grid cell (millimeters), and the average
annual temperature (degrees Celsius). A combination of bioclimatic and site-night specific
covariates consistent with previous analyses of bat acoustic data was included in each neg-
ative binomial count model (e.g., Wright et al. 2018; Rodhouse et al. 2019; Stratton et al.
2022). Bioclimatic variables were obtained from the Parameter-elevation Regressions on
Independent Slopes Model (PRISM, PRISM Climate Group 2022) at a 4km resolution
and included maximum nightly temperature (degrees Celsius). Site-night specific covari-
ates included the log of the count of detections from the previous night, and an indicator for
whether the detector was located by lentic water systems, lotic water systems, positioned in a
flyway, positioned near a roosting structure, or other, and the first-order interaction between
the log of the count of detections from the previous night and the site-type indicator. The
linear predictor for Pd occurrence included the latitude, longitude, their interaction, and
second and third degree polynomial effects. All continuous covariates were scaled to have
a mean of zero and a standard deviation of one prior to estimating the models.

In order to account for potential temporal correlation in bat activity orPd occurrence over
the three surveyed years, first-order auto-regressive terms were included in both the negative
binomial count and Pd occurrence portions of each model. Additionally, to account for the
hierarchical nesting structure (consecutive survey nights at a detector location and multiple
detector locations nested within a grid cell), nested detector-specific random intercepts were
included in the activity portion of each model. Specifically, letting i index the NABat grid
cell, d index the detector within grid cell i , and t index the year of survey, the random
intercepts, γidt , were drawn from the following hierarchical formulation:

μt ∼ N (0, σ 2
μ)

θi t ∼ N (μt , σ
2
θ )

γidt ∼ N (θi t , σ
2
γ )

(5)

All models were fit using Stan (Stan Development Team 2023a), with three independent
chains of 10,000 MCMC iterations each; each model was assessed for convergence visually
and through the Gelman–Rubin statistic (Brooks andGelman 1998). A complete description
of the code used to fit the model is provided in online Appendix (Stratton et al. 2023).
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3. RESULTS

3.1. SIMULATION STUDY

Theprecision of the posterior distribution andRMSE for the probability ofPd occurrence,
xAk , depended on the choice of model, the assumed strength of association between Pd and
bat activity (α), and whether both data sources were observed within thePd polygon (Figs. 2
and 3). Generally, there were greater precision and lower RMSE in estimating xAk if Pd data
were observed withinAk across all methods and scenarios. Additionally, the “joint” method
resulted in the greatest precision and lowestRMSEwhen estimating xAk on average, followed
by the “prior” and “plug-in” methods, respectively. However, in cases where the disease and
ecological processes were independent (α = 0), all three methods yielded approximately
equivalent estimates of xAk with similar precision and RMSE (Figs. 2 and 3, right panels).

The “plug-in” method resulted in nearly equivalent precision and RMSE in xAk across the
three values of α, and regardless of whether count data were observed withinAk (Figs. 2 and
3). Conversely, the “joint” method resulted in increasing precision, and decreasing RMSE,
as α increased in magnitude regardless of whether count data were observed within Ak ,
though the increase in precision and decrease in RMSE were greater in polygons where
count data were observed (Figs. 2 and 3). Together, these results suggest that the “joint”
method results in both greater precision and greater overall accuracy than the “plug-in”
method when estimating the probability of Pd occurrence, so long as the disease and count
processes are related. For example, consider the predicted probabilities in unsurveyed Pd
polygons that contained count data. In the case where Pd had a strong effect on the count
process, the RMSE of predicted probabilities was greater for the “plug-in” method than
for the “joint” method, on average (mean RMSE for “joint” of 0.0476, mean RMSE for
“plug-in” of 0.2410). In the case where Pd had a moderate effect on the count process, the
RMSE of predicted probabilities was again greater for the “plug-in” method than for the
“joint” method on average, though the discrepancy was lesser (mean RMSE for “joint” of
0.0996, mean RMSE for “plug-in” of 0.2310).

For the “prior” method, the impact of increasing the magnitude of α on the precision and
RMSE of xAk depended on whether count data were observed withinAk . If count data were
observed withinAk , the precision of xAk increased, and RMSE decreased, as α increased in
magnitude, similar to the “joint” method, though the increase was lesser. If count data were
not observed withinAk , increasing the magnitude of α had minimal impact on the precision
and RMSE of xAk , similar to the “plug-in” method. These results combined suggest that in
terms of precision and accuracy, the “prior” method results in Pd occurrence probability
estimates that are more similar to the “joint” method if count data are observed in a Pd
polygon, but more similar to the “plug-in” method if count data are not observed in a Pd
polygon. For example, consider the predicted probabilities in unsurveyed Pd polygons in
the scenarios where there was a strong impact of Pd on the count process. The RMSE of
predicted probabilities where count data were observed was greater for the “prior” method
than for the “joint” method, on average (mean RMSE for “joint” of 0.0476, mean RMSE for
“prior” of 0.0795). However in the case where count data were not observed, the RMSE for
the “prior” method was much greater than for the “joint” method, on average (mean RMSE
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for “joint” of 0.0720, mean RMSE for “prior” of 0.218). See Appendix A for visualizations
of the posterior mean probability of Pd occurrence for a subset of simulations and scenarios.

When estimating α, all three methods resulted in nearly equivalent estimates with similar
precision, yielding credibility intervals that achieved nominal coverage if the ecological and
disease processes were independent (Fig. 4, bottom panel). In the case where the magnitude
of α was moderate, the “prior” and “joint” methods resulted in similar estimates of α, with
the “prior” method resulting in slightly more precision than the “joint” method, and both
methods yielding approximately nominal coverage (Fig. 4, middle panel). Conversely, the
“plug-in” method resulted in credibility intervals that did not achieve nominal coverage,
an effect that was exacerbated as the magnitude of α increased (Fig. 4, top panel). In the
case where there was a strong effect of Pd on the ecological response, the “prior” method
again resulted in narrower credibility intervals than the “joint”method, though this increased
precision came at the cost of bias as the credibility intervals from the “prior” method did not
provide nominal coverage and resulted in lesser coverage than the “joint” method (Fig. 4,
top panel).

3.2. DATA ANALYSIS

Posteriormean estimates of the probability ofPd occurrence over timewere similar for all
three models and strongly suggest that the fungus has spread westward since 2020. Posterior
uncertainty for the estimated probability of Pd occurrence was greatest in 2020, when the
fewest polygons were sampled. Additionally, uncertainty in the posterior of the estimated
probability tended to be greater in the middle of the state along the forefront of Pd spread
within each year for all models considered. Pd occurrence probability uncertainty tended
to be less for the “joint” model relative to the “plug-in” and “prior” methods, particularly in
2020 when the fewest Pd polygons were sampled (Fig. 5), consistent with the results of the
simulation study. The discrepancy in standard deviations of the Pd occurrence probabilities
is lesser in 2022 for both comparisons in Fig. 5 (“joint”–“prior” and “joint”–“plug-in”). The
apparent gain in precision for the “prior” and “plug-in” models is a result of the additional
Pd surveillance data that are available in 2022; as a result, less spatial prediction is required,
benefiting the disjoint modeling frameworks. Even still, the “joint” model results in smaller
standard deviations for the probabilities of Pd occurrence in 2022, though the discrepancy
is lesser than in 2020 and 2021.

Ninety-five percent credibility intervals for a subset of regression coefficients from the
log-linear predictor of the negative binomial counts are provided in Fig. 6. After accounting
for the other site-level and bioclimatic variables, there is evidence of a strong, positive
association between log-mean bat activity and whether the site was located near lentic water
systems or lotic water systems, relative to the baseline category of “other.” Furthermore, the
association is stronger for lentic water systems than for lotic water systems, consistent with
previous analyses of bat activity (Blakey et al. 2018). Conditional on the other predictors
in the count model, there is also evidence of a strong positive association between the log-
mean bat activity and the log of the number of detections from the previous night. After
accounting for the site-level and bioclimatic variables, there was evidence of a negative
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Figure 2. Box plots of 95% credibility interval widths for Pseudogymnoascus destructans (Pd) occurrence prob-
abilities colored by whether the estimated occurrence probability was for a polygon that contained Pd data and
paneled by the assumed strength of the effect of Pd on the ecological response (columns) and whether count data
were observed within the polygon (rows). Each individual value within a box plot represents the mean credibility
interval width for all Pd probabilities from a single simulated data set that are consistent with the faceting condi-
tions. Generally, the “joint”method results in the greatest precision, followed by the “prior” and “plug-in”methods,
respectively. The effect of the strength of Pd on the precision from the “prior” method depends on whether count
data were observed within the polygon.

association between the probability of Pd occurrence and bat activity across all three years,
though there was a high degree of uncertainty in each of these estimates (Fig. 6).

4. DISCUSSION

We explored three approaches to spatially misaligned regression modeling that allow for
estimating the association between a known stressor (in our application, Pd, a non-native
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Figure 3. Box plots of RMSE for Pseudogymnoascus destructans (Pd) occurrence probabilities colored by
whether the estimated occurrence probability was for a polygon that contained Pd data and paneled by the assumed
strength of the effect of Pd on the ecological response (columns) and whether count data were observed within the
polygon (rows). Each individual value within a box plot represents the square root of the mean of the squared errors
for all Pd probabilities from a single simulated data set that are consistent with the faceting conditions. Generally,
the “joint” method results in the lowest RMSE, followed by the “prior” and “plug-in” methods, respectively.

fungus that causes WNS) and a species response. Our simulation study demonstrated the
importance of propagating the uncertainty in estimating a modeled quantity that is then
included as a predictor within an ecological response model. In the scenarios where there
was a moderate effect of Pd on mean relative bat activity, the “plug-in” method resulted in
an estimated effect of the disease (α) that did not achieve nominal coverage rates. In the case
where the disease had a strong impact onmean relative activity, both the “plug-in” and “prior”
methods resulted in overprecise estimates of α, consistent with previous findings (Cameletti
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Figure 4. Line plots of 95% credibility intervals for the effect of Pseudogymnoascus destructans (Pd) presence
on the ecological response, paneled by the strength of the effect of Pd on the ecological response. The larger
error bars represent average credibility intervals from each method and are colored by the proportion of credibility
intervals that captured the data generating values. As the strength of the effect of Pd on the ecological response
increases, the “prior” and “plug-in” methods fail to achieve nominal coverage.

et al. 2019),with lower coverage rates than our “joint”modeling framework. For theMontana
data sets, the posterior distributions for the estimated association between evidence ofPd and
summertime acoustic activity for WNS-susceptible species were nearly equivalent among
the three models. However, the estimated magnitude of α was relatively small for the three
models, which was closer to our “no effect” and “moderate effect” simulation scenarios, so
the similarity in posterior estimates was consistent with our simulation findings.

Our simulation study revealed an interesting practical benefit of jointlymodeling two bio-
logically linked processes, as is likely in our application, in that the response data informed
the modeled predictor even when the two data types were not co-located. On average, our
“joint” model resulted in less posterior uncertainty when estimating Pd occurrence than
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Figure 5. Map of the difference in posterior standard deviations of probabilities ofPseudogymnoascus destructans
Pd occurrence between the (left) “joint” modeling approach and “plug-in” modeling approach and (right) “joint”
modeling approach and “prior” modeling approach over time. Red fill denotes areas where the “joint” model
resulted in greater precision.

did either the “plug-in” or “prior” methods. Similarly, in our empirical data analysis we
found less uncertainty in the predicted Pd occurrence probabilities for the “joint” model
relative to the “plug-in” and “prior” models, on average. Our simulations showed preci-
sion increased for estimated disease occurrence probabilities with increasing magnitude of
the association between disease and the ecological response (α). In general, the simulation
study and empirical data analysis suggested that the joint modeling framework resulted in
the largest reduction of uncertainty in disease occurrence probabilities when either of the
two data sources was sparsely observed or the data sources were not co-located. Together,
these results demonstrate the value of the joint modeling framework for spatially misaligned
regression modeling when integrating costly data sources. In such cases, the joint modeling
framework can be used to improve the precision of parameter estimates when collecting
large volumes of data is difficult or unfeasible.

While the joint modeling framework provides more precise estimates of disease occur-
rence and fully propagates the uncertainty in estimation of disease occurrence through to
the ecological response, some care must be taken when implementing the “joint” model.
Notably, by modeling the disease occurrence and relative bat activity jointly, information
about relative activity can inform estimation of disease occurrence (Warren et al. 2012).
While this is a desirable property when modeling Pd occurrence and bat activity due to
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Figure 6. Ninety-five percent credibility intervals for a subset of regression coefficients in the count model;
intercept terms, temporal random effects, and detector-level random effects are omitted, and “lpc” denotes the log
of the count of detections from the preceding night. There are positive point estimates associated with sites located
near water, roosting structures, or within a flyway, the maximum nightly temperature, and the activity from the
previous night. There are negative effects associated with occurrence of Pseudogymnoascus destructans and some
interactions between site type and activity from the previous night.

the transmission mechanics of WNS, this property may not be desirable for all applica-
tions; the implication of considering the disease and ecological processes jointly is a model
assumption and should be carefully assessed prior to analysis. Additionally, by considering
disease occurrence and relative activity jointly, misspecification of the disease occurrence
model can lead to biased estimates of the impact of the disease on the ecological response
(Cameletti et al. 2019). If the two data sources are spatially misaligned and spatial predic-
tions are required, misspecification of either model could also lead to biased predictions of
the probability ofPd occurrence, potentially resulting in biased estimates of the impact ofPd
on the log-mean count. Consequently, it is especially important to perform rigorous model
assessment when implementing the joint model. Future work could consider the severity of
the impact of model misspecification on the predicted probabilities of Pd occurrence.
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Additional levels of complexity could be added to both the species distribution and
spatial components of the model. For example, random intercepts could be included in
the linear predictors for ψ and μ to account for spatial correlation in the occupancy and
count processes, respectively. If species-specific classifications are available for the acoustic
recordings, multi-species count models can be implemented to improve model fit (Wright
et al. 2020). Similarly, consideration of additional complexity in the Pd occurrence model,
such as allowing for imperfect detection or differing detection probabilities by survey type
(e.g., environmental, guano, or tissue) could be a useful next step to improve model fit (e.g.,
Campbell Grant et al. 2023). Additional temporal dynamics may also be included in the Pd
occurrence model to account for potential lagged impacts of Pd occurrence. Finally, con-
sidering spatially varying coefficients for α could reveal more subtle relationships between
WNS and summertime bat populations (e.g., Hastie and Tibshirani 1993; Fan and Zhang
1999; Finley 2011).Development of novelmodels formonitoring ofwildlife disease remains
an area of active research (Hefley et al. 2017; Hicks et al. 2020; Watsa, M. and Wildlife
Disease Surveillance Focus Group 2020;Wiens and Thogmartin 2022), and as the statistical
methodology evolves, our joint modeling framework can be easily updated accordingly.

For the empirical analysis outlined in this paper, point-referenced spatial informationwas
obfuscated due to sensitive locations used for Pd surveillance. However, the joint modeling
framework described in this paper is well suited to handle point-referenced disease occur-
rence data; alternatively, the geostatistical spatial process may be replaced by techniques
for areal data, including a Gaussian Markov random field (Banerjee et al. 2015). While
we did not encounter any computational challenges during our empirical analysis due to
the relatively small number of Pd polygons, re-considering the surveillance data as point-
referenced could increase the computational burden, particularly when expanding to larger
extents. The spatial Gaussian process (GP) specified in the “joint” model is prone to scala-
bility issues; notably, cubic complexity with the number of spatially indexed observations
(Liu et al. 2018). Recently, locally approximated GPs (Gramacy and Apley 2015) and near-
est neighbor GPs (Datta et al. 2016) have been proposed as solutions to the computational
burden of GPmodeling for large spatial data sets. Additionally, data augmentation strategies
could be explored to afford computationally efficient Gibbs updates of regression coeffi-
cients for the negative binomial sampling model (Polson et al. 2013), or MCMC techniques
may be abandoned for computationally efficient alternatives, such as the integrated nested
Laplace approximation (Rue et al. 2009). Such improvements would allow for comparison
of additional modeling techniques, including the “feed-forward” approach (Cameletti et al.
2019). Future exploration into optimization of the jointmodeling framework for large spatial
domains would directly benefit wildlife conservation activities coordinated across species
ranges.

Future work could also focus on evaluating the impact of co-locating the Pd surveillance
locations within the acoustic monitoring grid cells and consider optimal sampling designs
for estimation of the “joint” model. Investigations into optimal designs for spatial modeling
typically focus on guidance for selecting locations to measure one variable (e.g., relative
bat activity) to minimize prediction errors or estimation errors for the spatial parameters
(Zimmerman 2006; Irvine et al. 2007). However, exploring how to distribute sampling effort
for both data sources within the joint modeling framework would be valuable. Optimal sam-
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pling designs for the Pd surveillance process would ideally result in reduced uncertainty in
predicted Pd occurrence at unsurveyed locations, a property of maximum-entropy sampling
designs (Shewry andWynn 1987; Wang et al. 2020). However, the optimal design must also
accommodate the nuances of ecological sampling. Co-location is often either impractical
or impossible because of the biology of the species, as in our application, or constrained by
organizational barriers. The practical challenge is that one organization may be responsible
for collecting and managing the pathogen or disease data and a different organization could
be responsible for coordinating the surveys for the potentially impacted wildlife species
throughout its range. Our proposed joint modeling framework provides a means to integrate
disparate biosurveillance surveys with expansive wildlife population monitoring efforts
without requiring co-location. Importantly, the joint modeling framework is a statistical
solution to integrating, related but parallel, monitoring activities to better inform species
conservation across large landscapes.
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APPENDIX A: ADDITIONAL SIMULATION RESULTS

In Figs. 7, 8, and 9, we provide maps of the difference between the posterior mean
probability of Pd occurrence and the simulation generating values for a subset of simulated
data sets for strong, moderate, and no impact of Pd on the log-mean count, respectively. On
average, the “joint” model resulted in the smallest differences for the scenarios with strong
and moderate impacts of Pd on the log-mean count (Figs. 7 and 8). For simulated data

http://creativecommons.org/licenses/by/4.0/
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sets with no impact of Pd on the log-mean count, all models resulted in nearly equivalent
differences (Fig. 9). In general, the “joint” model tends to perform better than the “prior”
and “plug-in” models as the strength of the impact of Pd on the log-mean count increases,
consistent with the summary of results provided in the main body of the paper.
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Figure 7. Difference between the posterior mean probability of Pseudogymnoascus destructans (Pd) occurrence(
x̂Ak

)
and true generating probability

(
xAk

)
for a subset of simulated data sets assuming a strong impact of Pd

occurrence on the log-mean count. On average, the “joint” model resulted in the smallest differences, followed by
the “prior” and “plug-in” models.
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Figure 8. Difference between the posterior mean probability of Pseudogymnoascus destructans (Pd) occurrence(
x̂Ak

)
and true generating probability

(
xAk

)
for a subset of simulated data sets assuming a moderate impact of Pd

occurrence on the log-mean count. On average, the “joint” model resulted in the smallest differences, followed by
the “prior” and “plug-in” models.
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Figure 9. Difference between the posterior mean probability of Pseudogymnoascus destructans (Pd) occurrence(
x̂Ak

)
and true generating probability

(
xAk

)
for a subset of simulated data sets assuming no impact ofPd occurrence

on the log-mean count. All models resulted in nearly equivalent differences.
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